Rethinking MRI random signals modeling

J. M. V. Kinani, A. Rosales-Silva, F. Funes, Alfonso Arellano
{"title":"Rethinking MRI random signals modeling","authors":"J. M. V. Kinani, A. Rosales-Silva, F. Funes, Alfonso Arellano","doi":"10.1109/ICEEE.2013.6676085","DOIUrl":null,"url":null,"abstract":"Based on both the Physics of MRI and the central limit theorem, it is common practice to assume that the noise in MR images is Gauss distributed, but from an MR signal post-acquisition standpoint, this modeling approach can be proved to be erroneous, especially when the SNR is low. In this article, we present a thorough analysis that shows why the Gaussian model was adopted, and through the MR complex raw data post-acquisition mathematical treatment, the Rician model will be developed and proved to be the right MR random signals model.","PeriodicalId":226547,"journal":{"name":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"59 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2013.6676085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Based on both the Physics of MRI and the central limit theorem, it is common practice to assume that the noise in MR images is Gauss distributed, but from an MR signal post-acquisition standpoint, this modeling approach can be proved to be erroneous, especially when the SNR is low. In this article, we present a thorough analysis that shows why the Gaussian model was adopted, and through the MR complex raw data post-acquisition mathematical treatment, the Rician model will be developed and proved to be the right MR random signals model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新思考MRI随机信号建模
基于MRI物理和中心极限定理,通常假设MR图像中的噪声是高斯分布的,但从MR信号采集后的角度来看,这种建模方法可以被证明是错误的,特别是当信噪比较低时。在本文中,我们提出了一个彻底的分析,说明了为什么采用高斯模型,并通过采集后的MR复杂原始数据的数学处理,将开发并证明了医生模型是正确的MR随机信号模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronization of complex networks of fractional order nonlinear systems Approximate jitter probability in the breakpoints of genome copy number variations Optical and structural characterization of antimony doped zinc oxide single crystal Modeling of a greenhouse using Particle Swarm Optimization Influence of recombination on the energy and heat balance equations for a bipolar semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1