Extracting topic keywords from Sina Weibo text sets

S. Xu, Juncai Guo, Xue Chen
{"title":"Extracting topic keywords from Sina Weibo text sets","authors":"S. Xu, Juncai Guo, Xue Chen","doi":"10.1109/ICALIP.2016.7846663","DOIUrl":null,"url":null,"abstract":"Sina Weibo is one of the most popular microblogging website in China. It has more than 500 million registered users and the daily production of posters is over 100 million, with a market penetration similar to Twitter. Mining the useful information from large volume of fragmented short texts is a fundamental but very challenging research work. This paper proposes a method LET(LDA&Entropy&Tex-trank) to extract topic keywords from Sina Weibo topics text sets. LET considers both topic influence of keywords and topic discrimination of keyword that combines the merits of LDA, Entropy and TextRank. In addition, we design a new standard evaluation method KESS (topic KEywords Sta-ndard Sequence). Based on KESS, we can compute the offset loss scores for the four different keywords extraction methods. Extensive simulations show that LET is a comparatively efficient and effective method to obtain topic words from hot topics of Sina Weibo.","PeriodicalId":184170,"journal":{"name":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Audio, Language and Image Processing (ICALIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALIP.2016.7846663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Sina Weibo is one of the most popular microblogging website in China. It has more than 500 million registered users and the daily production of posters is over 100 million, with a market penetration similar to Twitter. Mining the useful information from large volume of fragmented short texts is a fundamental but very challenging research work. This paper proposes a method LET(LDA&Entropy&Tex-trank) to extract topic keywords from Sina Weibo topics text sets. LET considers both topic influence of keywords and topic discrimination of keyword that combines the merits of LDA, Entropy and TextRank. In addition, we design a new standard evaluation method KESS (topic KEywords Sta-ndard Sequence). Based on KESS, we can compute the offset loss scores for the four different keywords extraction methods. Extensive simulations show that LET is a comparatively efficient and effective method to obtain topic words from hot topics of Sina Weibo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从新浪微博文本集中提取主题关键词
新浪微博是中国最受欢迎的微博网站之一。其注册用户超过5亿,日制作海报量超过1亿张,市场渗透率与Twitter相当。从大量碎片化的短文本中挖掘有用信息是一项基础但又极具挑战性的研究工作。本文提出了一种LET(lda&entropy&text -trank)方法从新浪微博主题文本集中提取主题关键词。LET综合了LDA、熵和TextRank的优点,既考虑了关键词的主题影响,又考虑了关键词的主题识别。此外,我们设计了一种新的标准评价方法KESS(主题关键词标准序列)。基于KESS,我们可以计算四种不同关键字提取方法的偏移损失分数。大量的仿真结果表明,LET是一种相对高效、有效的从新浪微博热点话题中获取主题词的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of student activities trajectory and design of attendance management based on internet of things An RFID indoor positioning system by using Particle Swarm Optimization-based Artificial Neural Network Comparison of sparse-view CT image reconstruction algorithms Face recognition based on LBPH and regression of Local Binary features Research and application of dynamic and interactive data visualization based on D3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1