Modeling of a gyro-stabilized helicopter camera system using artificial neural networks

N. Layshot, Xiao-Hua Yu
{"title":"Modeling of a gyro-stabilized helicopter camera system using artificial neural networks","authors":"N. Layshot, Xiao-Hua Yu","doi":"10.1109/ICINFA.2011.5949035","DOIUrl":null,"url":null,"abstract":"On-board gimbal systems for camera stabilization in helicopters are typically based on linear models. Such models, however, are inaccurate due to system nonlinearities and complexities. As an alternative approach, artificial neural networks can provide a more accurate model of the gimbal system based on their non-linear mapping and generalization capabilities. This paper investigates the applications of artificial neural networks to model the inertial characteristics (on the azimuth axis) of the inner gimbal in a gyro-stabilized multi-gimbal system. The neural network is trained with time-domain data obtained from gyro rate sensors of an actual camera system. The network performance is evaluated and compared with measurement data and a traditional model. Computer simulation results show the neural network model fits well with the measurement data and significantly outperforms the traditional model.","PeriodicalId":299418,"journal":{"name":"2011 IEEE International Conference on Information and Automation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2011.5949035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

On-board gimbal systems for camera stabilization in helicopters are typically based on linear models. Such models, however, are inaccurate due to system nonlinearities and complexities. As an alternative approach, artificial neural networks can provide a more accurate model of the gimbal system based on their non-linear mapping and generalization capabilities. This paper investigates the applications of artificial neural networks to model the inertial characteristics (on the azimuth axis) of the inner gimbal in a gyro-stabilized multi-gimbal system. The neural network is trained with time-domain data obtained from gyro rate sensors of an actual camera system. The network performance is evaluated and compared with measurement data and a traditional model. Computer simulation results show the neural network model fits well with the measurement data and significantly outperforms the traditional model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的陀螺稳定直升机摄像机系统建模
用于直升机相机稳定的机载云台系统通常基于线性模型。然而,由于系统的非线性和复杂性,这种模型是不准确的。作为一种替代方法,人工神经网络可以基于其非线性映射和泛化能力提供更精确的框架系统模型。本文研究了利用人工神经网络对陀螺稳定多云台系统内云台的惯性特性(方位轴)进行建模的方法。该神经网络用实际摄像机陀螺速率传感器的时域数据进行训练。对网络性能进行评估,并与实测数据和传统模型进行比较。计算机仿真结果表明,神经网络模型与实测数据拟合良好,显著优于传统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on virtual scene simulation for planetary rover Experimental studies on kinematics and kinetics of walking with an assistive knee brace Pre-estimate Relative Intensity Noise subtraction performance of FOG by using signal cross-correlation Design the principal dimensions of ships based on a fuzzy hybrid operator Dynamic optimum design and analysis of cam wave generator for harmonic gear drive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1