Memory System Design for Ultra Low Power, Computationally Error Resilient Processor Microarchitectures

S. Srikanth, Paul G. Rabbat, Eric R. Hein, Bobin Deng, T. Conte, E. Debenedictis, Jeanine E. Cook, M. Frank
{"title":"Memory System Design for Ultra Low Power, Computationally Error Resilient Processor Microarchitectures","authors":"S. Srikanth, Paul G. Rabbat, Eric R. Hein, Bobin Deng, T. Conte, E. Debenedictis, Jeanine E. Cook, M. Frank","doi":"10.1109/HPCA.2018.00065","DOIUrl":null,"url":null,"abstract":"Dennard scaling ended a decade ago. Energy reduction by lowering supply voltage has been limited because of guard bands and a subthreshold slope of over 60mV/decade in MOSFETs. On the other hand, newly-proposed logic devices maintain a high on/off ratio for drain currents even at significantly lower operating voltages. However, such ultra low power technology would eventually suffer from intermittent errors in logic as a result of operating close to the thermal noise floor. Computational error correction mitigates this issue by efficiently correcting stochastic bit errors that may occur in computational logic operating at low signal energies, thereby allowing for energy reduction by lowering supply voltage to tens of millivolts. Cores based on a Redundant Residual Number System (RRNS), which represents a number using a tuple of smaller numbers, are a promising candidate for implementing energyefficient computational error correction. However, prior RRNS core microarchitectures abstract away the memory hierarchy and do not consider the power-performance impact of RNS-based memory addressing. When compared with a non-error-correcting core addressing memory in binary, naive RNS-based memory addressing schemes cause a slowdown of over 3x/2x for inorder/out-of-order cores respectively. In this paper, we analyze RNS-based memory access pattern behavior and provide solutions in the form of novel schemes and the resulting design space exploration, thereby, extending and enabling a tangible, ultra low power RRNS based architecture.","PeriodicalId":154694,"journal":{"name":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2018.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Dennard scaling ended a decade ago. Energy reduction by lowering supply voltage has been limited because of guard bands and a subthreshold slope of over 60mV/decade in MOSFETs. On the other hand, newly-proposed logic devices maintain a high on/off ratio for drain currents even at significantly lower operating voltages. However, such ultra low power technology would eventually suffer from intermittent errors in logic as a result of operating close to the thermal noise floor. Computational error correction mitigates this issue by efficiently correcting stochastic bit errors that may occur in computational logic operating at low signal energies, thereby allowing for energy reduction by lowering supply voltage to tens of millivolts. Cores based on a Redundant Residual Number System (RRNS), which represents a number using a tuple of smaller numbers, are a promising candidate for implementing energyefficient computational error correction. However, prior RRNS core microarchitectures abstract away the memory hierarchy and do not consider the power-performance impact of RNS-based memory addressing. When compared with a non-error-correcting core addressing memory in binary, naive RNS-based memory addressing schemes cause a slowdown of over 3x/2x for inorder/out-of-order cores respectively. In this paper, we analyze RNS-based memory access pattern behavior and provide solutions in the form of novel schemes and the resulting design space exploration, thereby, extending and enabling a tangible, ultra low power RRNS based architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超低功耗、计算误差弹性处理器微架构的存储系统设计
登纳德缩放法在十年前就结束了。由于mosfet的保护带和超过60mV/ 10年的亚阈值斜率,通过降低电源电压来降低能量受到限制。另一方面,新提出的逻辑器件即使在明显较低的工作电压下也能保持漏极电流的高开/关比。然而,这种超低功耗技术最终会因靠近热噪声底而导致逻辑上的间歇性错误。计算纠错通过有效地纠正在低信号能量下计算逻辑中可能出现的随机比特错误,从而通过将电源电压降低到几十毫伏来减少能量,从而减轻了这个问题。基于冗余余数系统(RRNS)的核是实现高效计算纠错的一个很有前途的候选者,RRNS使用较小的数字元组表示一个数字。然而,以前的RRNS核心微体系结构抽象了内存层次结构,并且没有考虑基于RRNS的内存寻址对功耗性能的影响。与二进制的非纠错核心寻址内存相比,朴素的基于rns的内存寻址方案分别导致无序/乱序内核的速度下降超过3x/2x。在本文中,我们分析了基于rns的内存访问模式行为,并以新颖的方案和由此产生的设计空间探索的形式提供了解决方案,从而扩展和实现了一个切实的、超低功耗的基于RRNS的架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Record-Replay Architecture as a General Security Framework LATTE-CC: Latency Tolerance Aware Adaptive Cache Compression Management for Energy Efficient GPUs Secure DIMM: Moving ORAM Primitives Closer to Memory OuterSPACE: An Outer Product Based Sparse Matrix Multiplication Accelerator WIR: Warp Instruction Reuse to Minimize Repeated Computations in GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1