Defect Identification and Classification of Tomato Leaf Using Convolutional Neural Network

S. Shargunam, G. Rajakumar
{"title":"Defect Identification and Classification of Tomato Leaf Using Convolutional Neural Network","authors":"S. Shargunam, G. Rajakumar","doi":"10.51983/ajes-2021.10.1.2834","DOIUrl":null,"url":null,"abstract":"Tomatoes are the most commonly grown crop globally, and they are used in almost every kitchen. India holds second place in the production of tomatoes. Due to the various kinds of diseases, the quantity and quality of tomato crop go down. Identifying the diseases in the earlier stage is very important and will help the farmers save the crop. The first initial step is pre-processing, for the Canny edge detection method is used for detecting the edges in the tomato leaves. The classification of tomato leaves is to be carried out by extracting the features like color, shape, and texture. Extracted features from segmented images are fed into classification. The convolutional neural network algorithm will be used, which will give a better accuracy to classify the diseases in the tomato leaves.","PeriodicalId":365290,"journal":{"name":"Asian Journal of Electrical Sciences","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Electrical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51983/ajes-2021.10.1.2834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tomatoes are the most commonly grown crop globally, and they are used in almost every kitchen. India holds second place in the production of tomatoes. Due to the various kinds of diseases, the quantity and quality of tomato crop go down. Identifying the diseases in the earlier stage is very important and will help the farmers save the crop. The first initial step is pre-processing, for the Canny edge detection method is used for detecting the edges in the tomato leaves. The classification of tomato leaves is to be carried out by extracting the features like color, shape, and texture. Extracted features from segmented images are fed into classification. The convolutional neural network algorithm will be used, which will give a better accuracy to classify the diseases in the tomato leaves.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的番茄叶片缺陷识别与分类
西红柿是全球种植最普遍的作物,几乎每个厨房都有。印度的番茄产量位居世界第二。由于各种病害的发生,致使番茄产量和品质下降。在早期阶段发现病害是非常重要的,这将有助于农民拯救作物。第一步是预处理,使用Canny边缘检测方法检测番茄叶片的边缘。番茄叶片的分类是通过提取番茄叶片的颜色、形状、纹理等特征来实现的。从分割后的图像中提取特征进行分类。将使用卷积神经网络算法,该算法将对番茄叶片的疾病进行更好的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Power System Security Protection in Microgrids Based on Advanced Metering Infrastructure Parameter Optimization of Refrigeration Chiller by Machine Learning Analysing and Optimizing the Refrigeration System Using Machine Learning Algorithm The Accuracy Analysis of Different Machine Learning Classifiers for Detecting Suicidal Ideation and Content A Novel Shaped Four Port MIMO Antenna for Wireless Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1