C. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, A. Godone
{"title":"Novel techniques for optical fiber links beyond current practice","authors":"C. Calosso, E. Bertacco, D. Calonico, C. Clivati, G. Costanzo, M. Frittelli, F. Levi, S. Micalizio, A. Mura, A. Godone","doi":"10.1109/EFTF.2014.7331413","DOIUrl":null,"url":null,"abstract":"It is well known that temperature variations and acoustic noise affect ultrastable frequency dissemination along optical fiber. Active stabilization techniques are in general adopted to compensate for the fiber-induced phase noise. However, despite this compensation, the ultimate link performances remain limited by the so called delay-unsuppressed fiber noise that is related to the propagation delay of the light in the fiber. In this paper, we demonstrate a data post-processing approach which enables us to overcome this limit. We implement a subtraction algorithm between the optical signal delivered at the remote link end and the round-trip signal. In this way, a 6dB improvement beyond the fundamental limit imposed by delay-unsuppressed noise is obtained. This result enhances the resolution of possible comparisons between remote optical clocks by a factor of 2. We confirm the theoretical prediction with experimental data obtained on a 47km metropolitan fiber link, and propose how to extend this method for frequency dissemination purposes as well.","PeriodicalId":129873,"journal":{"name":"2014 European Frequency and Time Forum (EFTF)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 European Frequency and Time Forum (EFTF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFTF.2014.7331413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
It is well known that temperature variations and acoustic noise affect ultrastable frequency dissemination along optical fiber. Active stabilization techniques are in general adopted to compensate for the fiber-induced phase noise. However, despite this compensation, the ultimate link performances remain limited by the so called delay-unsuppressed fiber noise that is related to the propagation delay of the light in the fiber. In this paper, we demonstrate a data post-processing approach which enables us to overcome this limit. We implement a subtraction algorithm between the optical signal delivered at the remote link end and the round-trip signal. In this way, a 6dB improvement beyond the fundamental limit imposed by delay-unsuppressed noise is obtained. This result enhances the resolution of possible comparisons between remote optical clocks by a factor of 2. We confirm the theoretical prediction with experimental data obtained on a 47km metropolitan fiber link, and propose how to extend this method for frequency dissemination purposes as well.