Maximum relevance and class separability for hyperspectral feature selection and classification

S. Jahanshahi
{"title":"Maximum relevance and class separability for hyperspectral feature selection and classification","authors":"S. Jahanshahi","doi":"10.1109/ICAICT.2016.7991685","DOIUrl":null,"url":null,"abstract":"Regarding a growing interest into exploiting hyperspectral images in the plethora of applications such as chemical material identification, agricultural crop mapping, military target detection and etc., myriad approaches have been introducing to interpret and analyze such data. In this paper, I am going to propose a novel method using the combination of two conventional method. Firstly, I use an evolutionary algorithm i.e., multi-objective particle swarm optimization (MOPSO) to select a predefined number of features (spectral bands) and then a well-known classifier i.e., support vector machines (SVMs) is deployed for classification.","PeriodicalId":446472,"journal":{"name":"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 10th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICT.2016.7991685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Regarding a growing interest into exploiting hyperspectral images in the plethora of applications such as chemical material identification, agricultural crop mapping, military target detection and etc., myriad approaches have been introducing to interpret and analyze such data. In this paper, I am going to propose a novel method using the combination of two conventional method. Firstly, I use an evolutionary algorithm i.e., multi-objective particle swarm optimization (MOPSO) to select a predefined number of features (spectral bands) and then a well-known classifier i.e., support vector machines (SVMs) is deployed for classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光谱特征选择和分类的最大相关性和类可分离性
由于人们对利用高光谱图像在化学材料识别、农作物测绘、军事目标探测等众多应用中的兴趣日益浓厚,已经引入了无数方法来解释和分析这些数据。在本文中,我将提出一种将两种传统方法相结合的新方法。首先,我使用一种进化算法,即多目标粒子群优化(MOPSO)来选择预定义数量的特征(光谱带),然后使用一种众所周知的分类器,即支持向量机(svm)进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opinion mining and Sentiment Analysis for contextual online-advertisement Analysis of bioclimatic structure of animals' habitats on the base of the heat balance simulation The subject-oriented notation for end-user data modelling Semi-automatic annotation tool for sign languages VLSI elements placement based on simulation of bats behavior in nature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1