Pattern classification by a Gibbsian Kohonen neural network with an application to Arabic character recognition

N. Mezghani, A. Mitiche
{"title":"Pattern classification by a Gibbsian Kohonen neural network with an application to Arabic character recognition","authors":"N. Mezghani, A. Mitiche","doi":"10.1109/IPTA.2008.4743747","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that the Gibbs density function can model complex patterns and that a constrained maximum entropy formulation affords a powerful means of estimating its parameters from pattern class data. The theory, developed in the context of learning a prior model of natural images, has been applied successfully to the synthesis of textures and shapes, and to pattern classification. The basic parameter estimation algorithm rests on gradient algorithm following the maximization under constraints of an entropy criterion. The purpose of this study is to investigate a Gibbsian Kohonen neural network, a Kohonen network which can learn these constrained maximum entropy Gibbs density parameters for pattern representation and classification. Experiments in classification of handwritten characters verify the validity and efficiency of the method.","PeriodicalId":384072,"journal":{"name":"2008 First Workshops on Image Processing Theory, Tools and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First Workshops on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2008.4743747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent studies have shown that the Gibbs density function can model complex patterns and that a constrained maximum entropy formulation affords a powerful means of estimating its parameters from pattern class data. The theory, developed in the context of learning a prior model of natural images, has been applied successfully to the synthesis of textures and shapes, and to pattern classification. The basic parameter estimation algorithm rests on gradient algorithm following the maximization under constraints of an entropy criterion. The purpose of this study is to investigate a Gibbsian Kohonen neural network, a Kohonen network which can learn these constrained maximum entropy Gibbs density parameters for pattern representation and classification. Experiments in classification of handwritten characters verify the validity and efficiency of the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Gibbsian Kohonen神经网络的模式分类及其在阿拉伯字符识别中的应用
最近的研究表明,吉布斯密度函数可以模拟复杂的模式,并且约束最大熵公式提供了从模式类数据估计其参数的有力手段。该理论是在学习自然图像的先验模型的背景下发展起来的,已经成功地应用于纹理和形状的合成以及模式分类。基本的参数估计算法是在熵准则约束下遵循最大值的梯度算法。本研究的目的是研究一个Gibbs - Kohonen神经网络,该网络可以学习这些约束的最大熵Gibbs密度参数来进行模式表示和分类。手写体分类实验验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Altered Image Alignment Technique for 3D Motion Estimation of a Reflective Sphere A New Approach to Face Image Coding using Gabor Wavelet Networks Artificial Neural Networks Based Image Processing & Pattern Recognition: From Concepts to Real-World Applications A New Spatial Approach to Image Restoration Detection and Counting of "in vivo" cells to predict cell migratory potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1