Design of LSM-tree-based Key-value SSDs with Bounded Tails

Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, Sungjin Lee
{"title":"Design of LSM-tree-based Key-value SSDs with Bounded Tails","authors":"Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, Sungjin Lee","doi":"10.1145/3452846","DOIUrl":null,"url":null,"abstract":"Key-value store based on a log-structured merge-tree (LSM-tree) is preferable to hash-based key-value store, because an LSM-tree can support a wider variety of operations and show better performance, especially for writes. However, LSM-tree is difficult to implement in the resource constrained environment of a key-value SSD (KV-SSD), and, consequently, KV-SSDs typically use hash-based schemes. We present PinK, a design and implementation of an LSM-tree-based KV-SSD, which compared to a hash-based KV-SSD, reduces 99th percentile tail latency by 73%, improves average read latency by 42%, and shows 37% higher throughput. The key idea in improving the performance of an LSM-tree in a resource constrained environment is to avoid the use of Bloom filters and instead, use a small amount of DRAM to keep/pin the top levels of the LSM-tree. We also find that PinK is able to provide a flexible design space for a wide range of KV workloads by leveraging the read-write tradeoff in LSM-trees.","PeriodicalId":273014,"journal":{"name":"ACM Transactions on Storage (TOS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage (TOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Key-value store based on a log-structured merge-tree (LSM-tree) is preferable to hash-based key-value store, because an LSM-tree can support a wider variety of operations and show better performance, especially for writes. However, LSM-tree is difficult to implement in the resource constrained environment of a key-value SSD (KV-SSD), and, consequently, KV-SSDs typically use hash-based schemes. We present PinK, a design and implementation of an LSM-tree-based KV-SSD, which compared to a hash-based KV-SSD, reduces 99th percentile tail latency by 73%, improves average read latency by 42%, and shows 37% higher throughput. The key idea in improving the performance of an LSM-tree in a resource constrained environment is to avoid the use of Bloom filters and instead, use a small amount of DRAM to keep/pin the top levels of the LSM-tree. We also find that PinK is able to provide a flexible design space for a wide range of KV workloads by leveraging the read-write tradeoff in LSM-trees.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于lsm树的有界尾键值ssd的设计
基于日志结构的合并树(LSM-tree)的键值存储比基于散列的键值存储更可取,因为LSM-tree可以支持更广泛的操作并显示更好的性能,特别是对于写操作。但是,在key-value SSD (KV-SSD)的资源受限环境中,很难实现LSM-tree,因此,KV-SSD通常使用基于哈希的方案。我们提出了PinK,一个基于lsm树的KV-SSD的设计和实现,与基于哈希的KV-SSD相比,它减少了73%的第99百分位尾部延迟,提高了42%的平均读延迟,并显示出37%的高吞吐量。在资源受限的环境中,提高lsm树性能的关键思想是避免使用Bloom过滤器,而是使用少量的DRAM来保持/固定lsm树的顶层。我们还发现,通过利用lsm树中的读写权衡,PinK能够为广泛的KV工作负载提供灵活的设计空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WebAssembly-based Delta Sync for Cloud Storage Services DEFUSE: An Interface for Fast and Correct User Space File System Access Donag: Generating Efficient Patches and Diffs for Compressed Archives Building GC-free Key-value Store on HM-SMR Drives with ZoneFS Kangaroo: Theory and Practice of Caching Billions of Tiny Objects on Flash
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1