Atmospheric Aerosol Prediction over Egypt with LSTM-RNN using NASA’s MERRA-2

M. Eltahan, Karim Moharm
{"title":"Atmospheric Aerosol Prediction over Egypt with LSTM-RNN using NASA’s MERRA-2","authors":"M. Eltahan, Karim Moharm","doi":"10.1109/NILES50944.2020.9257885","DOIUrl":null,"url":null,"abstract":"Aerosol optical depth (AOD) is one of the most critical indicators for air quality. Estimation of accurate AOD needs to include both dust and chemical reactions in the calculations which are expensive from a computational point of view. In this work, we present a novel and simple model to estimate and predict the temporal trend of AOD based on the well-known algorithm long-short term memory (LSTM). Five domains are the core of this study, Four popular cities Cairo, Alexandria, Aswan, and Hurghada are selected. In addition to one sub-domain which includes one of the most important and internal dust sources for Egypt, Qattara depression. We applied the LSTM algorithm to NASA’s MERRA-2 monthly AOD datasets as training and validation data-set. The algorithms showed a lower root mean square error. The trained models after validation are used to predict the temporal trend of AOD for the period 2020-2022 over the five selected domains.","PeriodicalId":253090,"journal":{"name":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES50944.2020.9257885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aerosol optical depth (AOD) is one of the most critical indicators for air quality. Estimation of accurate AOD needs to include both dust and chemical reactions in the calculations which are expensive from a computational point of view. In this work, we present a novel and simple model to estimate and predict the temporal trend of AOD based on the well-known algorithm long-short term memory (LSTM). Five domains are the core of this study, Four popular cities Cairo, Alexandria, Aswan, and Hurghada are selected. In addition to one sub-domain which includes one of the most important and internal dust sources for Egypt, Qattara depression. We applied the LSTM algorithm to NASA’s MERRA-2 monthly AOD datasets as training and validation data-set. The algorithms showed a lower root mean square error. The trained models after validation are used to predict the temporal trend of AOD for the period 2020-2022 over the five selected domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用NASA MERRA-2的LSTM-RNN预测埃及的大气气溶胶
气溶胶光学深度(AOD)是空气质量最重要的指标之一。准确的AOD估计需要在计算中包括灰尘和化学反应,从计算的角度来看,这是昂贵的。在这项工作中,我们提出了一种新颖而简单的模型来估计和预测AOD的时间趋势,该模型基于众所周知的长短期记忆(LSTM)算法。五个领域是本研究的核心,四个热门城市选择开罗,亚历山大,阿斯旺和赫尔格达。此外还有一个子域,其中包括埃及最重要的内部粉尘源之一,卡塔尔坳陷。我们将LSTM算法应用于NASA MERRA-2月度AOD数据集作为训练和验证数据集。该算法具有较低的均方根误差。将验证后的模型用于预测2020-2022年5个区域AOD的时间趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized Intersection Management of Autonomous Vehicles Using Nonlinear MPC Low power and area SHA-256 hardware accelerator on Virtex-7 FPGA Dynamic Programming Applications: A Suvrvey Self-Organizing Maps to Assess Rehabilitation Progress of Post-Stroke Patients SoC loosely Coupled Navigation Algorithm Evaluation via 6-DOF Flight Simulation Model of Guided Bomb
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1