Sign Language Digit Detection with MediaPipe and Machine Learning Algorithm

Safyzan Salim, M. M. A. Jamil, R. Ambar, R. Roslan, M. G. Kamardan
{"title":"Sign Language Digit Detection with MediaPipe and Machine Learning Algorithm","authors":"Safyzan Salim, M. M. A. Jamil, R. Ambar, R. Roslan, M. G. Kamardan","doi":"10.1109/ICCSCE54767.2022.9935659","DOIUrl":null,"url":null,"abstract":"A major challenge when developing Machine Learning (ML) sign language recognition using wearable is how to efficiently translate the gestures based on the acquired sensors data. Conventional method utilizes data fusion based on the obtained sensors' information by producing mapping/lookup table for creating classification model of gestures corresponding sensor value. Although this method is effective, it increases programming complexity. Therefore, emerging technology that can improve the simplicity and provide accuracy of gestures' data processing is needed. This work experiments the artificial intelligence approach of the development of American Sign Language (ASL) detection using MediaPipe, a ready-to-use cross-platform machine learning framework for computer vision works and Google Teachable Machine a free web tool of machine learning model creation.","PeriodicalId":346014,"journal":{"name":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE54767.2022.9935659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A major challenge when developing Machine Learning (ML) sign language recognition using wearable is how to efficiently translate the gestures based on the acquired sensors data. Conventional method utilizes data fusion based on the obtained sensors' information by producing mapping/lookup table for creating classification model of gestures corresponding sensor value. Although this method is effective, it increases programming complexity. Therefore, emerging technology that can improve the simplicity and provide accuracy of gestures' data processing is needed. This work experiments the artificial intelligence approach of the development of American Sign Language (ASL) detection using MediaPipe, a ready-to-use cross-platform machine learning framework for computer vision works and Google Teachable Machine a free web tool of machine learning model creation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MediaPipe和机器学习算法的手语数字检测
在使用可穿戴设备开发机器学习(ML)手语识别时,一个主要挑战是如何根据获取的传感器数据有效地翻译手势。传统的方法是在获取传感器信息的基础上进行数据融合,通过生成映射/查找表来建立相应传感器值的手势分类模型。虽然这种方法是有效的,但它增加了编程的复杂性。因此,需要新兴技术来提高手势数据处理的简洁性和准确性。这项工作使用MediaPipe(一个现成的跨平台机器学习框架,用于计算机视觉作品)和Google teeable machine(一个免费的机器学习模型创建网络工具)来实验开发美国手语(ASL)检测的人工智能方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Enforcements of Wireless Based Matrix LED Message Moving Display by HD-W60 Microcontroller Multilayer Perceptron Optimization of ECG Peaks for Cardiac Abnormality Detection Domestic Trash Classification with Transfer Learning Using VGG16 Telemetry System for Highland Tomato Plants Using Ubidots Platform Systematic Literature Review of Security Control Assessment Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1