Novel process integration flow of germanium-on-silicon FinFETs for low-power technologies

Sumit Choudhary, Midathala Yogesh, D. Schwarz, H. Funk, Subrata Ghosh, S. Sharma, J. Schulze, K. Gonsalves
{"title":"Novel process integration flow of germanium-on-silicon FinFETs for low-power technologies","authors":"Sumit Choudhary, Midathala Yogesh, D. Schwarz, H. Funk, Subrata Ghosh, S. Sharma, J. Schulze, K. Gonsalves","doi":"10.1116/6.0002767","DOIUrl":null,"url":null,"abstract":"Germanium channel FinFET transistors process integration on a silicon substrate is a promising candidate to extend the complementary metal–oxide–semiconductor semiconductor roadmap. This process has utilized the legacy of state-of-art silicon fabrication process technology and can be an immediate solution to integrate beyond Si channel materials over standard Si wafers. The fabrication of such devices involves several complicated technological steps, such as strain-free epi layers over the Si substrate to limit the substrate leakage and patterning of narrow and sharp fins over germanium (Ge). To overcome these issues, the active p-type germanium layers were grown over n-type germanium and virtual substrates. The poly ((4-(methacryloyloxy) phenyl) dimethyl sulfoniumtriflate) was utilized as a polymeric negative tone e-beam resist for sub-20 nm critical dimensions with low line edge roughness, line width roughness, and high etch resistance to pattern p-Ge fins to meet these concerns. Here, the devices use the mesa architecture that will allow low bandgap materials only at the active regions and raised fins to reduce the active area interaction with the substrate to suppress leakage currents. This paper discusses the simple five-layer process flow to fabricate FinFET devices with critical optimizations like resist prerequisite optimization conditions before exposure, alignment of various layers by electron beam alignment, pattern transfer optimizations using reactive ion etching, and bilayer resist for desired lift-off. The Ge-on-Si FinFET devices are fabricated with a width and gate length of 15/90 nm, respectively. The devices exhibit the improved ION/IOFF in order of ∼105, transconductance Gm ∼86 μS/μm, and subthreshold slope close to ∼90 mV/dec.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0002767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Germanium channel FinFET transistors process integration on a silicon substrate is a promising candidate to extend the complementary metal–oxide–semiconductor semiconductor roadmap. This process has utilized the legacy of state-of-art silicon fabrication process technology and can be an immediate solution to integrate beyond Si channel materials over standard Si wafers. The fabrication of such devices involves several complicated technological steps, such as strain-free epi layers over the Si substrate to limit the substrate leakage and patterning of narrow and sharp fins over germanium (Ge). To overcome these issues, the active p-type germanium layers were grown over n-type germanium and virtual substrates. The poly ((4-(methacryloyloxy) phenyl) dimethyl sulfoniumtriflate) was utilized as a polymeric negative tone e-beam resist for sub-20 nm critical dimensions with low line edge roughness, line width roughness, and high etch resistance to pattern p-Ge fins to meet these concerns. Here, the devices use the mesa architecture that will allow low bandgap materials only at the active regions and raised fins to reduce the active area interaction with the substrate to suppress leakage currents. This paper discusses the simple five-layer process flow to fabricate FinFET devices with critical optimizations like resist prerequisite optimization conditions before exposure, alignment of various layers by electron beam alignment, pattern transfer optimizations using reactive ion etching, and bilayer resist for desired lift-off. The Ge-on-Si FinFET devices are fabricated with a width and gate length of 15/90 nm, respectively. The devices exhibit the improved ION/IOFF in order of ∼105, transconductance Gm ∼86 μS/μm, and subthreshold slope close to ∼90 mV/dec.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低功耗技术的硅上锗finfet新工艺集成流程
锗通道FinFET晶体管在硅衬底上的工艺集成是扩展互补金属-氧化物-半导体半导体路线图的有希望的候选者。该工艺利用了最先进的硅制造工艺技术,可以立即解决在标准硅晶圆上集成硅通道材料的问题。这种装置的制造涉及几个复杂的技术步骤,例如在Si衬底上无应变外延层以限制衬底泄漏和在锗(Ge)上形成窄而尖锐的鳍状图案。为了克服这些问题,在n型锗和虚拟衬底上生长了活性p型锗层。聚(4-(甲基丙烯氧基)苯基)二甲基磺酰三氟酸酯)用作低于20 nm临界尺寸的聚合物负调电子束抗蚀剂,具有低线边缘粗糙度,线宽度粗糙度和高耐蚀刻性,以满足这些问题。在这里,器件使用平台架构,将允许低带隙材料仅在有源区域和凸起的鳍,以减少有源区域与基板的相互作用,以抑制泄漏电流。本文讨论了简单的五层工艺流程,以制造具有关键优化的FinFET器件,如曝光前的抗蚀先决条件优化,通过电子束对准各层的对准,使用反应离子蚀刻的模式转移优化,以及用于期望提升的双层抗蚀。制备的Ge-on-Si FinFET器件的宽度和栅极长度分别为15/90 nm。该器件表现出改善的离子/IOFF约为~ 105,跨导Gm ~ 86 μS/μm,亚阈值斜率接近~ 90 mV/dec。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Carbon nanotube collimator as an vacuum ultraviolet window Comparative study on variable axis lens systems based on tapered deflectors Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications Upgrading of the modified Knudsen equation and its verification for calculating the gas flow rate through cylindrical tubes Comparison of GeSn alloy films prepared by ion implantation and remote plasma-enhanced chemical vapor deposition methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1