Deep Learning Techniques for Speech Emotion Recognition: A Review

S. Pandey, H. S. Shekhawat, S. Prasanna
{"title":"Deep Learning Techniques for Speech Emotion Recognition: A Review","authors":"S. Pandey, H. S. Shekhawat, S. Prasanna","doi":"10.1109/RADIOELEK.2019.8733432","DOIUrl":null,"url":null,"abstract":"This paper presents an introduction to various deep learning techniques with the aim of capturing and classifying emotional state from speech utterances. Architectures such as Convolutional Neural Network(CNN) and Long Short-Term Memory(LSTM) have been used to test the emotion capturing capability from various standard speech represenations such as mel spectrogram, magnitude spectrogram and Mel-Frequency Cepstral Coefficients (MFCC’s) on two popular datasets- EMO-DB and IEMOCAP. Experimental findings along with reasoning have been presented as to which architecture and feature combination is better suited for the purpose of speech emotion recognition. This work explores the widely used basic deep learning architectures used in literature.","PeriodicalId":336454,"journal":{"name":"2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2019.8733432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

This paper presents an introduction to various deep learning techniques with the aim of capturing and classifying emotional state from speech utterances. Architectures such as Convolutional Neural Network(CNN) and Long Short-Term Memory(LSTM) have been used to test the emotion capturing capability from various standard speech represenations such as mel spectrogram, magnitude spectrogram and Mel-Frequency Cepstral Coefficients (MFCC’s) on two popular datasets- EMO-DB and IEMOCAP. Experimental findings along with reasoning have been presented as to which architecture and feature combination is better suited for the purpose of speech emotion recognition. This work explores the widely used basic deep learning architectures used in literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音情感识别的深度学习技术综述
本文介绍了各种深度学习技术,旨在从语音话语中捕获和分类情绪状态。卷积神经网络(CNN)和长短期记忆(LSTM)等架构已被用于在两个流行的数据集(EMO-DB和IEMOCAP)上测试来自各种标准语音表示(如mel谱图、幅度谱图和mel -频率倒谱系数(MFCC’s))的情绪捕获能力。实验结果和推理提出了哪种结构和特征组合更适合语音情感识别的目的。这项工作探讨了文献中广泛使用的基本深度学习架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Overview of the IEEE 802.15.4z Standard its Comparison and to the Existing UWB Standards Operational Frequency Bandwidth Rescalable Implementations of Constant Phase Devices Novice User Experiences with a Voice-Enabled Human-Robot Interaction Tool Comparison of Class C and High Efficiency Class E Amplifiers at 435 MHz Symbol Based Statistical RF Fingerprinting for Fake Base Station Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1