3D model retrieval using the 2D Poisson equation

Fattah Alizadeh, Alistair Sutherland
{"title":"3D model retrieval using the 2D Poisson equation","authors":"Fattah Alizadeh, Alistair Sutherland","doi":"10.1109/CBMI.2012.6269797","DOIUrl":null,"url":null,"abstract":"3D Model Retrieval is one of the most popular topics in computer vision and huge efforts are dedicated to finding a way to improve retrieval accuracy. Defining a new efficient and effective way to describe 3D models plays a critical role in the retrieval process. In this paper we propose a view-based shape signature to search and retrieve 3D objects using the 2D Poisson equation. Our proposed method uses 60 different 2D silhouettes, which are automatically extracted from different view-angles of 3D models. Solving the Poisson equation for each Silhouette assigns a number to each pixel as the pixel's signature. Counting and accumulating these pixel signatures generates a histogram-based signature for each silhouette (Silhouette Poisson Histogram or simply SilPH). By doing some preprocessing steps one can see that the signature is insensitive to rotation, scaling and translation. The results show a high power of discrimination on the McGill dataset and demonstrate that the proposed method outperforms other existing methods.","PeriodicalId":120769,"journal":{"name":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2012.6269797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

3D Model Retrieval is one of the most popular topics in computer vision and huge efforts are dedicated to finding a way to improve retrieval accuracy. Defining a new efficient and effective way to describe 3D models plays a critical role in the retrieval process. In this paper we propose a view-based shape signature to search and retrieve 3D objects using the 2D Poisson equation. Our proposed method uses 60 different 2D silhouettes, which are automatically extracted from different view-angles of 3D models. Solving the Poisson equation for each Silhouette assigns a number to each pixel as the pixel's signature. Counting and accumulating these pixel signatures generates a histogram-based signature for each silhouette (Silhouette Poisson Histogram or simply SilPH). By doing some preprocessing steps one can see that the signature is insensitive to rotation, scaling and translation. The results show a high power of discrimination on the McGill dataset and demonstrate that the proposed method outperforms other existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用二维泊松方程的三维模型检索
三维模型检索是计算机视觉中最热门的课题之一,人们一直在努力寻找提高检索精度的方法。定义一种新的高效的描述三维模型的方法在检索过程中起着至关重要的作用。在本文中,我们提出了一种基于视图的形状签名,利用二维泊松方程来搜索和检索三维物体。我们提出的方法使用60种不同的2D轮廓,这些轮廓从3D模型的不同视角自动提取。求解每个轮廓的泊松方程为每个像素分配一个数字作为像素的签名。计数和累积这些像素签名为每个轮廓生成基于直方图的签名(轮廓泊松直方图或简称SilPH)。通过做一些预处理步骤,可以看到签名对旋转、缩放和平移不敏感。结果表明,该方法在McGill数据集上具有很高的分辨能力,并且优于其他现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Water flow detection from a wearable device with a new feature, the spectral cover Comparing segmentation strategies for efficient video passage retrieval Audio and video cues for geo-tagging online videos in the absence of metadata Data pre-processing to improve SVM video classification Analyzing the behavior of professional video searchers using RAI query logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1