Multi-year, spatially extensive, watershed scale synoptic stream chemistry and water quality conditions for six permafrost-underlain Arctic watersheds

Arial J. Shogren, J. Zarnetske, Benjamin W. Abbott, Samuel P Bratsman, B. Brown, M. Carey, R. Fulweber, H. Greaves, E. Haines, F. Iannucci, J. Koch, Alexander Medvedeff, J. O’Donnell, Leika Patch, Brett A. Poulin, T. Williamson, W. Bowden
{"title":"Multi-year, spatially extensive, watershed scale synoptic stream chemistry and water quality conditions for six permafrost-underlain Arctic watersheds","authors":"Arial J. Shogren, J. Zarnetske, Benjamin W. Abbott, Samuel P Bratsman, B. Brown, M. Carey, R. Fulweber, H. Greaves, E. Haines, F. Iannucci, J. Koch, Alexander Medvedeff, J. O’Donnell, Leika Patch, Brett A. Poulin, T. Williamson, W. Bowden","doi":"10.5194/essd-2021-155","DOIUrl":null,"url":null,"abstract":"Abstract. Repeated sampling of spatially distributed river chemistry can be used to assess the location, scale, and stability of carbon and nutrient contributions to watershed-scale exports. Here, we provide a comprehensive set of water chemistry measurements and secondary ecosystem metrics describing the biogeochemical conditions of permafrost-affected Arctic watershed networks. These data were collected in watershed-wide repeated synoptic campaigns across six rivers across northern Alaska. Three watersheds are associated with the Arctic Long-Term Ecological Research (ARC LTER) site at Toolik Field Station (TFS), which were sampled seasonally each June and August from 2016 to 2018. Three watersheds were associated with the National Park Service (NPS) of Alaska and the US. Geological Survey (USGS), and were sampled annually from 2015 to 2019. Extensive water chemistry characterization included carbon species, dissolved nutrients, and anions and cations. The objective of the sampling designs and data acquisition was to generate a dataset to support the estimation of ecosystem metrics that describe the dominant location, scale, and overall stability of ecosystem processes in the Arctic. These metrics are: (1) subcatchment leverage, (2) variance collapse, and (3) spatial stability. Both water chemistry concentrations and secondary metrics are available at the National Park Service Integrated Resource Management Application portal (https://doi.org/10.5066/P9SBK2DZ) and within the Environmental Data Initiative LTER Data Portal (https://doi.org/10.6073/pasta/258a44fb9055163dd4dd4371b9dce945). \n","PeriodicalId":326085,"journal":{"name":"Earth System Science Data Discussions","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Science Data Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/essd-2021-155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract. Repeated sampling of spatially distributed river chemistry can be used to assess the location, scale, and stability of carbon and nutrient contributions to watershed-scale exports. Here, we provide a comprehensive set of water chemistry measurements and secondary ecosystem metrics describing the biogeochemical conditions of permafrost-affected Arctic watershed networks. These data were collected in watershed-wide repeated synoptic campaigns across six rivers across northern Alaska. Three watersheds are associated with the Arctic Long-Term Ecological Research (ARC LTER) site at Toolik Field Station (TFS), which were sampled seasonally each June and August from 2016 to 2018. Three watersheds were associated with the National Park Service (NPS) of Alaska and the US. Geological Survey (USGS), and were sampled annually from 2015 to 2019. Extensive water chemistry characterization included carbon species, dissolved nutrients, and anions and cations. The objective of the sampling designs and data acquisition was to generate a dataset to support the estimation of ecosystem metrics that describe the dominant location, scale, and overall stability of ecosystem processes in the Arctic. These metrics are: (1) subcatchment leverage, (2) variance collapse, and (3) spatial stability. Both water chemistry concentrations and secondary metrics are available at the National Park Service Integrated Resource Management Application portal (https://doi.org/10.5066/P9SBK2DZ) and within the Environmental Data Initiative LTER Data Portal (https://doi.org/10.6073/pasta/258a44fb9055163dd4dd4371b9dce945). 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
北极六个永久冻土下的流域多年、空间广泛、流域尺度的天气流化学和水质条件
摘要空间分布的河流化学重复采样可用于评估流域尺度输出的碳和养分贡献的位置、规模和稳定性。在这里,我们提供了一套全面的水化学测量和二级生态系统指标,描述了受永久冻土影响的北极流域网络的生物地球化学条件。这些数据是在横跨阿拉斯加北部六条河流的流域范围内反复天气运动中收集的。图里克野外站(TFS)的北极长期生态研究(ARC LTER)站点与三个流域有关,从2016年到2018年,每年6月和8月进行季节性采样。三个流域与阿拉斯加和美国的国家公园管理局(NPS)有关。美国地质调查局(USGS)的数据,从2015年到2019年每年采样一次。广泛的水化学表征包括碳种类,溶解的营养物质,阴离子和阳离子。采样设计和数据采集的目的是生成一个数据集,以支持描述北极生态系统过程的主导位置、规模和整体稳定性的生态系统指标的估计。这些指标是:(1)子流域杠杆,(2)方差崩溃,(3)空间稳定性。水化学浓度和二级指标可在国家公园管理局综合资源管理应用程序门户网站(https://doi.org/10.5066/P9SBK2DZ)和环境数据倡议LTER数据门户网站(https://doi.org/10.6073/pasta/258a44fb9055163dd4dd4371b9dce945)中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea LGHAP: a Long-term Gap-free High-resolution Air Pollutants concentration dataset derived via tensor flow based multimodal data fusion Pre- and post-production processes along supply chains increasingly dominate GHG emissions from agri-food systems globally and in most countries Last Interglacial sea-level data points from Northwest Europe A machine learning approach to address air quality changes during the COVID-19 lockdown in Buenos Aires, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1