Review of Non-Invasive Blood Glucose Level Estimation based on Photoplethysmography and Artificial Intelligent Technology

Ernia Susana, K. Ramli
{"title":"Review of Non-Invasive Blood Glucose Level Estimation based on Photoplethysmography and Artificial Intelligent Technology","authors":"Ernia Susana, K. Ramli","doi":"10.1109/QIR54354.2021.9716164","DOIUrl":null,"url":null,"abstract":"The emergence of photoplethysmography for the non-invasive estimation of blood glucose levels in diabetes management offers an alternative solution to the limitations of invasive methods. The application of artificial intelligence technology to PPG signals for non-invasive measurement of monitoring blood glucose level (BGL) using either a machine learning (ML) or deep learning (DL) approach is proven to improve the resulting performance. This review is presented to provide concise information about current and proposed technologies developments of non-invasive blood glucose level monitoring methods using photoplethysmography. The study focuses on the opportunities and constraints in developing research on this topic.","PeriodicalId":446396,"journal":{"name":"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QIR54354.2021.9716164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The emergence of photoplethysmography for the non-invasive estimation of blood glucose levels in diabetes management offers an alternative solution to the limitations of invasive methods. The application of artificial intelligence technology to PPG signals for non-invasive measurement of monitoring blood glucose level (BGL) using either a machine learning (ML) or deep learning (DL) approach is proven to improve the resulting performance. This review is presented to provide concise information about current and proposed technologies developments of non-invasive blood glucose level monitoring methods using photoplethysmography. The study focuses on the opportunities and constraints in developing research on this topic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于光容积脉搏波和人工智能技术的无创血糖水平检测研究进展
光容积脉搏波的出现为糖尿病管理中无创血糖水平的评估提供了一种替代方案,以解决侵入性方法的局限性。将人工智能技术应用于PPG信号,使用机器学习(ML)或深度学习(DL)方法进行无创测量,以监测血糖水平(BGL),已被证明可以提高结果性能。本文简要介绍了利用光容积脉搏波仪进行无创血糖监测的技术进展。本研究的重点是发展这一主题研究的机会和制约因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conference Schedule Automatic Essay Grading System for Japanese Language Exam using CNN-LSTM Design of Cross and Square Slot with Beamforming for Microstrip Reflectarray Antenna at 28 GHz Performance Analysis of YOLOv4 and SSD Mobilenet V2 for Foreign Object Debris (FOD) Detection at Airport Runway Using Custom Dataset Development of Greedy Power Allocation Round Robin Scheduling for 5.5G Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1