Letting ants labeling point features [sic.: for 'labeling' read 'label']

Michael Schreyer, G. Raidl
{"title":"Letting ants labeling point features [sic.: for 'labeling' read 'label']","authors":"Michael Schreyer, G. Raidl","doi":"10.1109/CEC.2002.1004475","DOIUrl":null,"url":null,"abstract":"This paper describes an ant colony system (ACS) for labeling point features. A pre-processing step reduces the search space in a safe way. The ACS applies local improvement and masking, a technique that focuses the optimization on critical regions. Empirical results indicate that the ACS reliably identifies high-quality solutions which are in many cases better than those of a state-of-the-art genetic algorithm for point-feature labeling.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1004475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper describes an ant colony system (ACS) for labeling point features. A pre-processing step reduces the search space in a safe way. The ACS applies local improvement and masking, a technique that focuses the optimization on critical regions. Empirical results indicate that the ACS reliably identifies high-quality solutions which are in many cases better than those of a state-of-the-art genetic algorithm for point-feature labeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
让蚂蚁标记点特征[原文如此]。:为“标签”为“标签”]
本文描述了一种用于标记点特征的蚁群系统(ACS)。预处理步骤以安全的方式减少了搜索空间。ACS采用局部改进和掩蔽,这是一种专注于关键区域优化的技术。实证结果表明,ACS可靠地识别出高质量的解决方案,在许多情况下,这些解决方案优于最先进的点特征标记遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of FPGA based adaptive image enhancement filter system using genetic algorithms Intelligent predictive control of a power plant with evolutionary programming optimizer and neuro-fuzzy identifier Blocked stochastic sampling versus Estimation of Distribution Algorithms Distinguishing adaptive from non-adaptive evolution using Ashby's law of requisite variety An artificial immune network for multimodal function optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1