kTRACKER: Passively Tracking KRACK using ML Model

Anand Agrawal, Urbi Chatterjee, R. Maiti
{"title":"kTRACKER: Passively Tracking KRACK using ML Model","authors":"Anand Agrawal, Urbi Chatterjee, R. Maiti","doi":"10.1145/3508398.3519360","DOIUrl":null,"url":null,"abstract":"Recently, a number of attacks have been demonstrated (like key reinstallation attack, called KRACK) on WPA2 protocol suite in Wi-Fi WLAN. In this paper, we design and implement a system, called kTRACKER, to passively detect anomalies in the handshake of Wi-Fi security protocols, in particular WPA2, between a client and an access point using COTS radios. A state machine model is implemented to detect KRACK attack by passively monitoring multiple wireless channels. In particular, we perform deep packet inspection and develop a grouping algorithm to group Wi-Fi handshake packets to identify the symptoms of the KRACK in specific stages of a handshake session. Our implementation of kTRACKER does not require any modification to the firmware of the supplicant i.e., client or the authenticator i.e., access point or the COTS devices, our system just needs to be in the accessible range from clients and access points. We use a publicly available dataset for performance analysis of kTRACKER. We employ gradient boosting-based supervised machine learning models, and show that an accuracy around 93.39% and a false positive rate of 5.08% can be achieved using kTRACKER.","PeriodicalId":102306,"journal":{"name":"Proceedings of the Twelfth ACM Conference on Data and Application Security and Privacy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508398.3519360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, a number of attacks have been demonstrated (like key reinstallation attack, called KRACK) on WPA2 protocol suite in Wi-Fi WLAN. In this paper, we design and implement a system, called kTRACKER, to passively detect anomalies in the handshake of Wi-Fi security protocols, in particular WPA2, between a client and an access point using COTS radios. A state machine model is implemented to detect KRACK attack by passively monitoring multiple wireless channels. In particular, we perform deep packet inspection and develop a grouping algorithm to group Wi-Fi handshake packets to identify the symptoms of the KRACK in specific stages of a handshake session. Our implementation of kTRACKER does not require any modification to the firmware of the supplicant i.e., client or the authenticator i.e., access point or the COTS devices, our system just needs to be in the accessible range from clients and access points. We use a publicly available dataset for performance analysis of kTRACKER. We employ gradient boosting-based supervised machine learning models, and show that an accuracy around 93.39% and a false positive rate of 5.08% can be achieved using kTRACKER.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
kTRACKER:使用ML模型被动跟踪KRACK
最近,在Wi-Fi WLAN的WPA2协议套件上出现了许多攻击(如密钥重装攻击,称为KRACK)。在本文中,我们设计并实现了一个名为kTRACKER的系统,该系统使用COTS无线电在客户端和接入点之间被动检测Wi-Fi安全协议(特别是WPA2)握手中的异常情况。通过被动监控多个无线信道,实现状态机模型检测KRACK攻击。特别是,我们执行深度数据包检查并开发分组算法,对Wi-Fi握手数据包进行分组,以识别握手会话特定阶段的KRACK症状。我们的kTRACKER实现不需要对请求方(即客户端)或验证方(即接入点或COTS设备)的固件进行任何修改,我们的系统只需要在客户端和接入点的可访问范围内。我们使用公开可用的数据集对kTRACKER进行性能分析。我们采用基于梯度增强的监督机器学习模型,并表明使用kTRACKER可以实现约93.39%的准确率和5.08%的误报率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Session 7: Encryption and Privacy RS-PKE: Ranked Searchable Public-Key Encryption for Cloud-Assisted Lightweight Platforms Prediction of Mobile App Privacy Preferences with User Profiles via Federated Learning Building a Commit-level Dataset of Real-world Vulnerabilities Shared Multi-Keyboard and Bilingual Datasets to Support Keystroke Dynamics Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1