Effect on the Mechanical Properties of Grey Cast Iron with Variation of Molybdenum and AS – Cast Alloying Elements

Sujith Bobba, M. S. Rao, B. H. Babu, Z. Leman
{"title":"Effect on the Mechanical Properties of Grey Cast Iron with Variation of Molybdenum and AS – Cast Alloying Elements","authors":"Sujith Bobba, M. S. Rao, B. H. Babu, Z. Leman","doi":"10.13189/UJME.2020.080602","DOIUrl":null,"url":null,"abstract":"Metal casting is a predominant manufacturing advancement for adeptly fabricating components with complicated shapes. Many of the industrial castings produced are made from steel and iron alloys with attractive properties and less production cost. In this research work, the effect of molybdenum addition to class 30 type grey cast iron for the production of high performance cast iron (HPCI) has been carried out. Molybdenum inclusion not only refines the majority of graphite flakes but also increases the length of a small fraction of graphite flakes and improves the thermal conductivity by a percentage up to 2.2% fixed as per the research conducted, while excessive molybdenum insertion not only induces precipitation and solution reinforcement but it will also enhance the ultimate tensile strength (UTS) and hardness. According to research conducted, it was proved that molybdenum inclusion of 120 gm showed a functional way to spread HPCI with enhancing mechanical and thermal properties in grey cast iron when compared to other percentages of molybdenum used and also the average difference in the percentage of hardness in each type of molybdenum sample is about 5 to 10 %. Finally, after the tests, it was also predicted that the molybdenum's hardenability property was beneficial for white cast iron production which will rise the wear resistance property.","PeriodicalId":275027,"journal":{"name":"Universal Journal of Mechanical Engineering","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJME.2020.080602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Metal casting is a predominant manufacturing advancement for adeptly fabricating components with complicated shapes. Many of the industrial castings produced are made from steel and iron alloys with attractive properties and less production cost. In this research work, the effect of molybdenum addition to class 30 type grey cast iron for the production of high performance cast iron (HPCI) has been carried out. Molybdenum inclusion not only refines the majority of graphite flakes but also increases the length of a small fraction of graphite flakes and improves the thermal conductivity by a percentage up to 2.2% fixed as per the research conducted, while excessive molybdenum insertion not only induces precipitation and solution reinforcement but it will also enhance the ultimate tensile strength (UTS) and hardness. According to research conducted, it was proved that molybdenum inclusion of 120 gm showed a functional way to spread HPCI with enhancing mechanical and thermal properties in grey cast iron when compared to other percentages of molybdenum used and also the average difference in the percentage of hardness in each type of molybdenum sample is about 5 to 10 %. Finally, after the tests, it was also predicted that the molybdenum's hardenability property was beneficial for white cast iron production which will rise the wear resistance property.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钼和AS合金元素对灰口铸铁力学性能的影响
金属铸造是一个主要的制造进步,熟练地制造复杂形状的部件。生产的许多工业铸件是由具有吸引人的性能和较低的生产成本的钢和铁合金制成的。本文研究了在30级灰铸铁中添加钼对生产高性能铸铁(HPCI)的影响。钼的掺入不仅细化了大部分石墨薄片,还增加了一小部分石墨薄片的长度,并使其导热系数提高了2.2%,而过量的钼的掺入不仅会导致析出和固溶强化,还会提高极限抗拉强度和硬度。研究表明,与其他钼含量相比,120 gm钼含量对灰口铸铁具有增强力学性能和热性能的扩展HPCI的功能,并且每种钼样品的硬度百分比的平均差异约为5 ~ 10%。最后,通过试验预测钼的淬透性有利于白口铸铁的生产,从而提高其耐磨性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heat Transfer in a HfB2 Microchannel Heat Sink: A Numerical Approach Design and Implementation of Highly Robust Gantry-Type and Low-Cost 3D Concrete Printer for Construction Estimating Tire Forces Using MLP Neural Network and LM Algorithm: A Comparative Study Optimization of Quarter Car Suspension Dynamics Using Power Spectral Density of Irregular Road Profile CAD Modelling and Fatigue Analysis of a Wheel Rim Incorporating Finite Element Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1