{"title":"Satellite propulsion spectral signature detection and analysis","authors":"Pamela Wheeler, R. Cobb, C. Hartsfield, B. Prince","doi":"10.1109/AERO.2017.7943963","DOIUrl":null,"url":null,"abstract":"Space Situational Awareness (SSA) is of utmost importance in today's space dependent, congested and contested environment. The health of a propulsion system is vital to ensure proper function and thus proper mission placement. Electric propulsion is gaining popularity for satellite propulsion systems due to higher efficiencies, specific impulse, and the savings it offers in both spacecraft mass and launch costs. Electron temperature is a commonly used diagnostic to determine the efficiency of a Hall thruster. Recent papers have coordinated near infrared (NIR) spectral measurements of ionization lines in xenon and krypton to electron temperature measurements. This research will characterize NIR plume emissions for a 600 Watt Hall thruster using both xenon and krypton propellants for a variety of observation angles and operating power levels. By determining spectral differences when altering these variables, it would be possible to identify angle, power level, and propellant in order to provide information on electron temperature and thus efficiency. Although they have a high specific impulse, electric propulsion systems provide lower thrust than chemical alternatives. This means that the firing times needed for spacecraft maneuvers can be on the order of hours to months. This provides an opportunity for this characterization to not only be put to use in chamber experiments but on-orbit as well. Ground-based observations of these spectral lines would allow for identification of the type of thruster as well as the health of the system while the satellite is in operation on-orbit. The current SSA architecture is limited and task saturated. If smaller telescopes, like those at universities, could successfully detect these signatures they could augment data collection for the SSA network. To facilitate data collection, precise atmospheric modeling must be used to identify the signature. Within the atmosphere, the NIR has a higher transmission rate and typical HET propellants are approximately 3x the intensity in the NIR versus the visible spectrum making it ideal for ground based observations. This research will combine emission measurements with atmospheric and plume models to develop a single end-to-end model that will determine xenon and krypton signatures through the atmosphere, discernable differences in power level and viewing angle of Hall thruster systems, and estimate the efficacy through ground-based observations.","PeriodicalId":224475,"journal":{"name":"2017 IEEE Aerospace Conference","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2017.7943963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Space Situational Awareness (SSA) is of utmost importance in today's space dependent, congested and contested environment. The health of a propulsion system is vital to ensure proper function and thus proper mission placement. Electric propulsion is gaining popularity for satellite propulsion systems due to higher efficiencies, specific impulse, and the savings it offers in both spacecraft mass and launch costs. Electron temperature is a commonly used diagnostic to determine the efficiency of a Hall thruster. Recent papers have coordinated near infrared (NIR) spectral measurements of ionization lines in xenon and krypton to electron temperature measurements. This research will characterize NIR plume emissions for a 600 Watt Hall thruster using both xenon and krypton propellants for a variety of observation angles and operating power levels. By determining spectral differences when altering these variables, it would be possible to identify angle, power level, and propellant in order to provide information on electron temperature and thus efficiency. Although they have a high specific impulse, electric propulsion systems provide lower thrust than chemical alternatives. This means that the firing times needed for spacecraft maneuvers can be on the order of hours to months. This provides an opportunity for this characterization to not only be put to use in chamber experiments but on-orbit as well. Ground-based observations of these spectral lines would allow for identification of the type of thruster as well as the health of the system while the satellite is in operation on-orbit. The current SSA architecture is limited and task saturated. If smaller telescopes, like those at universities, could successfully detect these signatures they could augment data collection for the SSA network. To facilitate data collection, precise atmospheric modeling must be used to identify the signature. Within the atmosphere, the NIR has a higher transmission rate and typical HET propellants are approximately 3x the intensity in the NIR versus the visible spectrum making it ideal for ground based observations. This research will combine emission measurements with atmospheric and plume models to develop a single end-to-end model that will determine xenon and krypton signatures through the atmosphere, discernable differences in power level and viewing angle of Hall thruster systems, and estimate the efficacy through ground-based observations.