Learned Preconditioned Conjugate Gradient Descent for Massive MIMO Detection

Toluwaleke Olutayo, B. Champagne
{"title":"Learned Preconditioned Conjugate Gradient Descent for Massive MIMO Detection","authors":"Toluwaleke Olutayo, B. Champagne","doi":"10.1109/LATINCOM56090.2022.10000560","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the use of model-based neural networks for Massive Multiple-Input Multiple-Output (MMIMO) detection. Recently, a new M-MIMO detection architecture called LcgNet [1] was obtained by unfolding an iterative conjugate gradient descent algorithm into a layer-wise network and introducing additional trainable parameters. Herein, we extend this approach by introducing a preconditioner aimed at improving the spectrum of the filter matrix used in the uplink MIMO detector. Specifically, the preconditioning scheme reduces the eigenvalue spread of the filter matrix, thus resulting in better convergence of the conjugate gradient algorithm. The proposed extension of LcgNet with preconditioning, referred to as PrLcgNet, is evaluated by means of simulations over M-MIMO uncorrelated Rayleigh fading channels and correlated fading channels. Compared to the original LcgNet, Pr-LcgNet exhibits faster convergence and lower residual error in the training phase, while achieving comparable bit error rate (BER) performance using fewer layers.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the use of model-based neural networks for Massive Multiple-Input Multiple-Output (MMIMO) detection. Recently, a new M-MIMO detection architecture called LcgNet [1] was obtained by unfolding an iterative conjugate gradient descent algorithm into a layer-wise network and introducing additional trainable parameters. Herein, we extend this approach by introducing a preconditioner aimed at improving the spectrum of the filter matrix used in the uplink MIMO detector. Specifically, the preconditioning scheme reduces the eigenvalue spread of the filter matrix, thus resulting in better convergence of the conjugate gradient algorithm. The proposed extension of LcgNet with preconditioning, referred to as PrLcgNet, is evaluated by means of simulations over M-MIMO uncorrelated Rayleigh fading channels and correlated fading channels. Compared to the original LcgNet, Pr-LcgNet exhibits faster convergence and lower residual error in the training phase, while achieving comparable bit error rate (BER) performance using fewer layers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模MIMO检测的习得预条件共轭梯度下降
在本文中,我们研究了基于模型的神经网络在大规模多输入多输出(MMIMO)检测中的应用。最近,通过将迭代共轭梯度下降算法展开到分层网络中并引入额外的可训练参数,获得了一种新的M-MIMO检测架构LcgNet[1]。在此,我们通过引入旨在改善上行MIMO检测器中使用的滤波器矩阵频谱的预调节器来扩展该方法。具体而言,该预处理方案减小了滤波矩阵的特征值扩展,从而使共轭梯度算法具有更好的收敛性。通过对M-MIMO非相关瑞利衰落信道和相关衰落信道的仿真,对基于预处理的LcgNet扩展(PrLcgNet)进行了评价。与原始的LcgNet相比,Pr-LcgNet在训练阶段具有更快的收敛速度和更低的残差,同时使用更少的层数实现了相当的误码率(BER)性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-band Optical Network Assisted by GNPy: an Experimental Demonstration A Stacked Ensemble Classifier for an Intrusion Detection System in the Edge of IoT and IIoT Networks A Novel Short-term Vehicle Location Prediction using Temporal Graph Neural Networks LATINCOM 2022 Message from the General Chairs LATINCOM 2022 TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1