An Efficient Asynchronous Batch Bayesian Optimization Approach for Analog Circuit Synthesis

Shuhan Zhang, Fan Yang, Dian Zhou, Xuan Zeng
{"title":"An Efficient Asynchronous Batch Bayesian Optimization Approach for Analog Circuit Synthesis","authors":"Shuhan Zhang, Fan Yang, Dian Zhou, Xuan Zeng","doi":"10.1109/DAC18072.2020.9218592","DOIUrl":null,"url":null,"abstract":"In this paper, we propose EasyBO, an Efficient ASYn-chronous Batch Bayesian Optimization approach for analog circuit synthesis. In this proposed approach, instead of waiting for the slowest simulations in the batch to finish, we accelerate the optimization procedure by asynchronously issuing the next query points whenever there is an idle worker. We introduce a new acquisition function which can better explore the design space for asynchronous batch Bayesian optimization. A new strategy is proposed to better balance the exploration and exploitation and guarantee the diversity of the query points. And a penalization scheme is proposed to further avoid redundant queries during the asynchronous batch optimization. The efficiency of optimization can thus be further improved. Compared with the state-of-the-art batch Bayesian optimization algorithm, EasyBO achieves up to 7.35× speed-up without sacrificing the optimization results.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"317 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper, we propose EasyBO, an Efficient ASYn-chronous Batch Bayesian Optimization approach for analog circuit synthesis. In this proposed approach, instead of waiting for the slowest simulations in the batch to finish, we accelerate the optimization procedure by asynchronously issuing the next query points whenever there is an idle worker. We introduce a new acquisition function which can better explore the design space for asynchronous batch Bayesian optimization. A new strategy is proposed to better balance the exploration and exploitation and guarantee the diversity of the query points. And a penalization scheme is proposed to further avoid redundant queries during the asynchronous batch optimization. The efficiency of optimization can thus be further improved. Compared with the state-of-the-art batch Bayesian optimization algorithm, EasyBO achieves up to 7.35× speed-up without sacrificing the optimization results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟电路合成中一种高效的异步批处理贝叶斯优化方法
在本文中,我们提出了一种用于模拟电路合成的高效异步批处理贝叶斯优化方法EasyBO。在这种提出的方法中,我们不是等待批处理中最慢的模拟完成,而是通过在有空闲工作者时异步发出下一个查询点来加速优化过程。我们引入了一个新的获取函数,可以更好地探索异步批处理贝叶斯优化的设计空间。提出了一种新的策略,以更好地平衡查询点的探索和开发,保证查询点的多样性。为了进一步避免异步批处理优化过程中的冗余查询,提出了一种惩罚方案。从而进一步提高优化效率。与目前最先进的批处理贝叶斯优化算法相比,EasyBO在不牺牲优化结果的情况下实现了高达7.35倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1