On the Volume Calculation for Conditional DAG Tasks: Hardness and Algorithms*

Jinghao Sun, Yaoyao Chi, Tianfei Xu, Lei Cao, Nan Guan, Zhishan Guo, W. Yi
{"title":"On the Volume Calculation for Conditional DAG Tasks: Hardness and Algorithms*","authors":"Jinghao Sun, Yaoyao Chi, Tianfei Xu, Lei Cao, Nan Guan, Zhishan Guo, W. Yi","doi":"10.23919/DATE48585.2020.9116559","DOIUrl":null,"url":null,"abstract":"The hardness of analyzing conditional directed acyclic graph (DAG) tasks remains unknown so far. For example, previous researches asserted that the conditional DAG's volume can be solved in polynomial time. However, these researches all assume well-nested structures that are recursively composed by single-source-single-sink parallel and conditional components. For conditional DAGs in general that do not comply with this assumption, the hardness and algorithms of volume computation are still open. In this paper, we construct counterexamples to show that previous work cannot provide a safe upper bound of the conditional DAG's volume in general. Moreover, we prove that the volume computation problem for conditional DAGs is strongly $\\mathcal{N}\\mathcal{P}$-hard. Finally, we propose an exact algorithm for computing the conditional DAG's volume. Experiments show that our method can significantly improve the accuracy of the conditional DAG's volume estimation.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The hardness of analyzing conditional directed acyclic graph (DAG) tasks remains unknown so far. For example, previous researches asserted that the conditional DAG's volume can be solved in polynomial time. However, these researches all assume well-nested structures that are recursively composed by single-source-single-sink parallel and conditional components. For conditional DAGs in general that do not comply with this assumption, the hardness and algorithms of volume computation are still open. In this paper, we construct counterexamples to show that previous work cannot provide a safe upper bound of the conditional DAG's volume in general. Moreover, we prove that the volume computation problem for conditional DAGs is strongly $\mathcal{N}\mathcal{P}$-hard. Finally, we propose an exact algorithm for computing the conditional DAG's volume. Experiments show that our method can significantly improve the accuracy of the conditional DAG's volume estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
条件DAG任务的体积计算:硬度和算法*
分析条件有向无环图(DAG)任务的难度目前尚不清楚。例如,先前的研究认为条件DAG的体积可以在多项式时间内求解。然而,这些研究都假设了由单源单汇并行和条件组件递归组成的良好嵌套结构。对于一般不符合这一假设的条件dag,体积计算的硬度和算法仍然是开放的。在本文中,我们构造了反例来证明以前的工作一般不能提供条件DAG体积的安全上界。此外,我们证明了条件dag的体积计算问题是强$\mathcal{N}\mathcal{P}$-hard的。最后,我们提出了一种计算条件DAG体积的精确算法。实验表明,该方法可以显著提高条件DAG的体积估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1