On Asymptotic Analysis of Relative Generalized Hamming Weight

Zhuojun Zhuang, Bin Dai, Keke Zhang, Zhen Jing, Jia Huang, Hao Zhu
{"title":"On Asymptotic Analysis of Relative Generalized Hamming Weight","authors":"Zhuojun Zhuang, Bin Dai, Keke Zhang, Zhen Jing, Jia Huang, Hao Zhu","doi":"10.1109/IWSDA46143.2019.8966115","DOIUrl":null,"url":null,"abstract":"The relative generalized Hamming weight (RGHW) Mr(C,C1) of an [n, k] (linear) code C and an [n, k1] subcode C1, a generalization of generalized Hamming weight (GHW), has been applied to wiretap channel, network coding, linear ramp secret sharing, and trellis complexity, etc. Asymptotic analysis of RGHW is useful for investigating the optimal performance of these applications when code length is sufficiently large. For linear ramp secret sharing schemes, the asymptotic metric we previously introduced is inconvenient for characterizing its performance mainly because the rate of information leakage is not considered.In this paper, we improve the previous work by introducing two new asymptotic metrics, respectively, for the cases that r is fixed and r is proportionally increasing with n. For fixed r, we show the asymptotic Singleton, Plotkin and Gilbert-Varshamov bounds on the first metric. For increasing r, we determine the value of the second metric.","PeriodicalId":326214,"journal":{"name":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Ninth International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA46143.2019.8966115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The relative generalized Hamming weight (RGHW) Mr(C,C1) of an [n, k] (linear) code C and an [n, k1] subcode C1, a generalization of generalized Hamming weight (GHW), has been applied to wiretap channel, network coding, linear ramp secret sharing, and trellis complexity, etc. Asymptotic analysis of RGHW is useful for investigating the optimal performance of these applications when code length is sufficiently large. For linear ramp secret sharing schemes, the asymptotic metric we previously introduced is inconvenient for characterizing its performance mainly because the rate of information leakage is not considered.In this paper, we improve the previous work by introducing two new asymptotic metrics, respectively, for the cases that r is fixed and r is proportionally increasing with n. For fixed r, we show the asymptotic Singleton, Plotkin and Gilbert-Varshamov bounds on the first metric. For increasing r, we determine the value of the second metric.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于相对广义汉明权的渐近分析
将广义汉明权值(GHW)推广到[n, k](线性)码C和[n, k1]子码C1的相对广义汉明权值(RGHW) Mr(C,C1),已应用于窃听信道、网络编码、线性斜坡秘密共享和网格复杂度等领域。当代码长度足够大时,RGHW的渐近分析对于研究这些应用程序的最佳性能非常有用。对于线性斜坡秘密共享方案,我们之前引入的渐近度量不方便表征其性能,主要是因为没有考虑信息泄漏率。在本文中,我们改进了以前的工作,分别引入了r是固定的和r随n成比例增加的两个新的渐近度量。对于固定的r,我们给出了第一个度量上的渐近Singleton界、Plotkin界和Gilbert-Varshamov界。为了增加r,我们确定第二个度规的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization Method for Designing Sequences With Low Partial-period Autocorrelation Sidelobes Decoding Scheduling for Unequal Error Protection Quasi-Cyclic Low-Density Parity-Check Codes 4q-QAM Complementary Sequence Sets with Non-Power-of-Two Length* Properties of Knuth’s Quadratic Congruential Sequences with Modulus m = 2W p New Constructions of Binary (Near) Complementary Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1