{"title":"Salient object detection in image sequences via spatial-temporal cue","authors":"Chuang Gan, Zengchang Qin, Jia Xu, T. Wan","doi":"10.1109/VCIP.2013.6706438","DOIUrl":null,"url":null,"abstract":"Contemporary video search and categorization are non-trivial tasks due to the massively increasing amount and content variety of videos. We put forward the study of visual saliency models in video. Such a model is employed to identify salient objects from the image background. Starting from the observation that motion information in video often attracts more human attention compared to static images, we devise a region contrast based saliency detection model using spatial-temporal cues (RCST). We introduce and study four saliency principles to realize the RCST. This generalizes the previous static image for saliency computational model to video. We conduct experiments on a publicly available video segmentation database where our method significantly outperforms seven state-of-the-art methods with respect to PR curve, ROC curve and visual comparison.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Contemporary video search and categorization are non-trivial tasks due to the massively increasing amount and content variety of videos. We put forward the study of visual saliency models in video. Such a model is employed to identify salient objects from the image background. Starting from the observation that motion information in video often attracts more human attention compared to static images, we devise a region contrast based saliency detection model using spatial-temporal cues (RCST). We introduce and study four saliency principles to realize the RCST. This generalizes the previous static image for saliency computational model to video. We conduct experiments on a publicly available video segmentation database where our method significantly outperforms seven state-of-the-art methods with respect to PR curve, ROC curve and visual comparison.