A C++ class supporting state-deficient adjoint state methods

M. Enríquez
{"title":"A C++ class supporting state-deficient adjoint state methods","authors":"M. Enríquez","doi":"10.1145/1347787.1347805","DOIUrl":null,"url":null,"abstract":"The adjoint-state method is widely used for computing gradients in simulation-driven optimization problems. The adjoint-state evolution equation requires access to the entire history of the system states. There are instances, however, where the required state for the adjoint-state evolution is not readily accessible. This poster introduces a C++ class, StateHistory, to support multiple solutions to this problem. Derived StateHistory classes implement a (simulation) time-altering function and data-access functions, which can be used in tandem to access the entire state history. These ideas were implemented in the context of TSOpt, a time-stepping library for simulation-driven optimization algorithms. Copyright is held by author/owner(s) Tapia'07, October 14-17, 2007, Lake Buena Vista, Florida, USA ACM 978-1-59593-866-4/07/0010","PeriodicalId":326471,"journal":{"name":"Richard Tapia Celebration of Diversity in Computing Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Richard Tapia Celebration of Diversity in Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1347787.1347805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The adjoint-state method is widely used for computing gradients in simulation-driven optimization problems. The adjoint-state evolution equation requires access to the entire history of the system states. There are instances, however, where the required state for the adjoint-state evolution is not readily accessible. This poster introduces a C++ class, StateHistory, to support multiple solutions to this problem. Derived StateHistory classes implement a (simulation) time-altering function and data-access functions, which can be used in tandem to access the entire state history. These ideas were implemented in the context of TSOpt, a time-stepping library for simulation-driven optimization algorithms. Copyright is held by author/owner(s) Tapia'07, October 14-17, 2007, Lake Buena Vista, Florida, USA ACM 978-1-59593-866-4/07/0010
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个c++类,支持缺乏状态的伴随状态方法
在仿真驱动优化问题中,伴随状态法被广泛应用于梯度计算。伴随状态演化方程需要访问系统状态的整个历史。然而,在某些情况下,伴随状态演化所需的状态并不容易达到。这张海报介绍了一个c++类StateHistory来支持这个问题的多种解决方案。派生的StateHistory类实现了一个(模拟的)时间改变函数和数据访问函数,它们可以串联使用来访问整个状态历史。这些想法是在topt的背景下实现的,topt是一个用于仿真驱动优化算法的时间步进库。版权由作者/所有者Tapia'07持有,2007年10月14日至17日,美国佛罗里达州Lake Buena Vista, ACM 978-1-59593-866-4/07/0010
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building information assurance education partnerships with minority institutions A platform-based design environment for synthetic biological systems Broadening participation: a community college strategy Performing traffic analysis on a wireless identifier-free link layer A knowledge-based database system for visual rating of fMRI activation patterns for brain language networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1