Chaotic fractal search algorithm for global optimization with application to control design

T. A. Rahman, A. As’arry, N. A. A. Jalil, R. K. R. Ahmad
{"title":"Chaotic fractal search algorithm for global optimization with application to control design","authors":"T. A. Rahman, A. As’arry, N. A. A. Jalil, R. K. R. Ahmad","doi":"10.1109/ISCAIE.2017.8074960","DOIUrl":null,"url":null,"abstract":"This paper presents chaos-embedded optimization algorithms named as Chaotic Fractal Search (CFS). These algorithms are improved variance to original Stochastic Fractal Search (SFS) algorithm. The influence of two chaos maps which are Chebyshev map and Gauss/Mouse map on the convergence speed and fitness accuracy of the SFS are investigated in this study. Two well-known benchmark test functions with different dimension levels and landscapes were employed in order to evaluate the performance of proposed CFS algorithms in comparison to their predecessor algorithm. Furthermore, the proposed approach is implemented in the optimal tuning of conventional PID and PD-type fuzzy logic controllers for a twin rotor system (TRS) in hovering mode. The simulation study indicates that CFS algorithm with Gauss/Mouse chaotic map in both Diffusion and First Updating process outperforms other CFS algorithms and original SFS algorithm. In addition, PD-type fuzzy logic controller shows superiority over PID controller in twin rotor system control design.","PeriodicalId":298950,"journal":{"name":"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAIE.2017.8074960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents chaos-embedded optimization algorithms named as Chaotic Fractal Search (CFS). These algorithms are improved variance to original Stochastic Fractal Search (SFS) algorithm. The influence of two chaos maps which are Chebyshev map and Gauss/Mouse map on the convergence speed and fitness accuracy of the SFS are investigated in this study. Two well-known benchmark test functions with different dimension levels and landscapes were employed in order to evaluate the performance of proposed CFS algorithms in comparison to their predecessor algorithm. Furthermore, the proposed approach is implemented in the optimal tuning of conventional PID and PD-type fuzzy logic controllers for a twin rotor system (TRS) in hovering mode. The simulation study indicates that CFS algorithm with Gauss/Mouse chaotic map in both Diffusion and First Updating process outperforms other CFS algorithms and original SFS algorithm. In addition, PD-type fuzzy logic controller shows superiority over PID controller in twin rotor system control design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混沌分形搜索算法的全局优化及其在控制设计中的应用
提出了一种嵌入混沌的优化算法——混沌分形搜索算法(CFS)。这些算法是对原始随机分形搜索算法的改进。研究了Chebyshev映射和Gauss/Mouse映射两种混沌映射对SFS收敛速度和适应度精度的影响。采用两个著名的具有不同维度水平和景观的基准测试函数来评估CFS算法与之前算法的性能。并将该方法应用于双旋翼系统悬停模式下传统PID和pd型模糊控制器的最优整定。仿真研究表明,在扩散和第一次更新过程中采用Gauss/Mouse混沌映射的CFS算法优于其他CFS算法和原始SFS算法。此外,在双转子系统控制设计中,pd型模糊控制器比PID控制器更具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A data-driven sigmoid-based PI controller for buck-converter powered DC motor Emperical analysis of hyper-heuristic search algorithms in expensive numerical optimzation Hybrid BCI utilising SSVEP and P300 event markers for reliable and improved classification using LED stimuli Adaptive authentication: Implementing random canvas fingerprinting as user attributes factor Design of a low voltage DC grid interfacing PV and energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1