E. Allender, L. Hellerstein, Paul McCabe, T. Pitassi, M. Saks
{"title":"Minimizing DNF formulas and AC/sup 0//sub d/ circuits given a truth table","authors":"E. Allender, L. Hellerstein, Paul McCabe, T. Pitassi, M. Saks","doi":"10.1109/CCC.2006.27","DOIUrl":null,"url":null,"abstract":"For circuit classes R, the fundamental computational problem Min-R asks for the minimum R-size of a Boolean function presented as a truth table. Prominent examples of this problem include Min-DNF, which asks whether a given Boolean function presented as a truth table has a k-term DNF, and Min-Circuit (also called MCSP), which asks whether a Boolean function presented as a truth table has a size k Boolean circuit. We present a new reduction proving that Min-DNF is NP-complete. It is significantly simpler than the known reduction of Masek (1979), which is from Circuit-SAT. We then give a more complex reduction, yielding the result that Min-DNF cannot be approximated to within a factor smaller than (log N)Upsi, for some constant Upsi > 0, assuming that NP is not contained in quasipolynomial time. The standard greedy algorithm for set cover is often used in practice to approximate Min-DNF. The question of whether Min-DNF can be approximated to within a factor of o(log N) remains open, but we construct an instance of Min-DNF on which the solution produced by the greedy algorithm is Omega(log N) larger than optimal. Finally, we extend known hardness results for Min-TC0 d to obtain new hardness results for Min-AC 0 d, under cryptographic assumptions","PeriodicalId":325664,"journal":{"name":"21st Annual IEEE Conference on Computational Complexity (CCC'06)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st Annual IEEE Conference on Computational Complexity (CCC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2006.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
For circuit classes R, the fundamental computational problem Min-R asks for the minimum R-size of a Boolean function presented as a truth table. Prominent examples of this problem include Min-DNF, which asks whether a given Boolean function presented as a truth table has a k-term DNF, and Min-Circuit (also called MCSP), which asks whether a Boolean function presented as a truth table has a size k Boolean circuit. We present a new reduction proving that Min-DNF is NP-complete. It is significantly simpler than the known reduction of Masek (1979), which is from Circuit-SAT. We then give a more complex reduction, yielding the result that Min-DNF cannot be approximated to within a factor smaller than (log N)Upsi, for some constant Upsi > 0, assuming that NP is not contained in quasipolynomial time. The standard greedy algorithm for set cover is often used in practice to approximate Min-DNF. The question of whether Min-DNF can be approximated to within a factor of o(log N) remains open, but we construct an instance of Min-DNF on which the solution produced by the greedy algorithm is Omega(log N) larger than optimal. Finally, we extend known hardness results for Min-TC0 d to obtain new hardness results for Min-AC 0 d, under cryptographic assumptions