Classification of interior noise comfort level of Proton model cars using feedforward neural network

M. Paulraj, A. M. Andrew
{"title":"Classification of interior noise comfort level of Proton model cars using feedforward neural network","authors":"M. Paulraj, A. M. Andrew","doi":"10.1504/IJAISC.2013.056838","DOIUrl":null,"url":null,"abstract":"In this research, a Proton model cars noise comfort level classification system has been developed to detect the noise comfort level in cars using artificial neural network. This research focuses on developing a database consisting of car sound samples measured from different Proton make models in stationary and moving state. In the stationary condition, the sound pressure level is measured at 1,300 RPM, 2,000 RPM and 3,000 RPM while in moving condition, the sound is recorded using dB Orchestra while the car is moving at constant speed from 30 km/h up to 110 km/h. Subjective test is conducted to find the jury's evaluation for the specific sound sample. The feature set is then feed to the neural network model to classify the comfort level. The spectral power feature gives the highest classification accuracy of 88.42%.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2013.056838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, a Proton model cars noise comfort level classification system has been developed to detect the noise comfort level in cars using artificial neural network. This research focuses on developing a database consisting of car sound samples measured from different Proton make models in stationary and moving state. In the stationary condition, the sound pressure level is measured at 1,300 RPM, 2,000 RPM and 3,000 RPM while in moving condition, the sound is recorded using dB Orchestra while the car is moving at constant speed from 30 km/h up to 110 km/h. Subjective test is conducted to find the jury's evaluation for the specific sound sample. The feature set is then feed to the neural network model to classify the comfort level. The spectral power feature gives the highest classification accuracy of 88.42%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于前馈神经网络的宝腾汽车内部噪声舒适度分类
本研究采用人工神经网络技术,开发了宝腾汽车噪声舒适度分类系统,实现了对汽车噪声舒适度的检测。本研究的重点是建立一个由不同宝腾车型在静止和运动状态下测量的汽车声音样本组成的数据库。在静止状态下,声压级分别测量为1300转/分、2000转/分、3000转/分,在移动状态下,在30公里/小时至110公里/小时的恒定速度下,使用dB Orchestra录制声音。通过主观测试找到陪审团对特定声音样本的评价。然后将特征集馈送到神经网络模型中对舒适度进行分类。光谱功率特征的分类准确率最高,为88.42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Path management strategy to reduce flooding of grid fisheye state routing protocol in mobile ad hoc network using fuzzy and rough set theory A novel cryptosystem based on cooperating distributed grammar systems Analysis of an M/G/1 retrial queue with Bernoulli vacation, two types of service and starting failure Array P system with t-communicating and permitting mate operation Two-dimensional double jumping finite automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1