Recognizing Emotion in the Wild using Multimodal Data

Shivam Srivastava, Saandeep Aathreya Sidhapur Lakshminarayan, Saurabh Hinduja, Sk Rahatul Jannat, Hamza Elhamdadi, Shaun J. Canavan
{"title":"Recognizing Emotion in the Wild using Multimodal Data","authors":"Shivam Srivastava, Saandeep Aathreya Sidhapur Lakshminarayan, Saurabh Hinduja, Sk Rahatul Jannat, Hamza Elhamdadi, Shaun J. Canavan","doi":"10.1145/3382507.3417970","DOIUrl":null,"url":null,"abstract":"In this work, we present our approach for all four tracks of the eighth Emotion Recognition in the Wild Challenge (EmotiW 2020). The four tasks are group emotion recognition, driver gaze prediction, predicting engagement in the wild, and emotion recognition using physiological signals. We explore multiple approaches including classical machine learning tools such as random forests, state of the art deep neural networks, and multiple fusion and ensemble-based approaches. We also show that similar approaches can be used across tracks as many of the features generalize well to the different problems (e.g. facial features). We detail evaluation results that are either comparable to or outperform the baseline results for both the validation and testing for most of the tracks.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3417970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, we present our approach for all four tracks of the eighth Emotion Recognition in the Wild Challenge (EmotiW 2020). The four tasks are group emotion recognition, driver gaze prediction, predicting engagement in the wild, and emotion recognition using physiological signals. We explore multiple approaches including classical machine learning tools such as random forests, state of the art deep neural networks, and multiple fusion and ensemble-based approaches. We also show that similar approaches can be used across tracks as many of the features generalize well to the different problems (e.g. facial features). We detail evaluation results that are either comparable to or outperform the baseline results for both the validation and testing for most of the tracks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用多模态数据识别野外情绪
在这项工作中,我们提出了我们在野生挑战(EmotiW 2020)中第八届情绪识别的所有四个轨道的方法。这四项任务分别是群体情绪识别、驾驶员注视预测、预测野外参与以及利用生理信号进行情绪识别。我们探索了多种方法,包括经典的机器学习工具,如随机森林,最先进的深度神经网络,以及多种融合和基于集成的方法。我们还表明,类似的方法可以跨轨道使用,因为许多特征可以很好地概括不同的问题(例如面部特征)。我们详细描述了对于大多数轨迹的验证和测试,与基线结果相比较或者优于基线结果的评估结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OpenSense: A Platform for Multimodal Data Acquisition and Behavior Perception Human-centered Multimodal Machine Intelligence Touch Recognition with Attentive End-to-End Model MORSE: MultimOdal sentiment analysis for Real-life SEttings Temporal Attention and Consistency Measuring for Video Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1