MRF and DP based specular surface reconstruction

K. RavindraRedddy, A. Namboodiri
{"title":"MRF and DP based specular surface reconstruction","authors":"K. RavindraRedddy, A. Namboodiri","doi":"10.1109/NCVPRIPG.2013.6776239","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of reconstruction of specular surfaces using a combination of Dynamic Programming and Markov Random Fields formulation. Unlike traditional methods that require the exact position of environment points to be known, our method requires only the relative position of the environment points to be known for computing approximate normals and infer shape from them. We present an approach which estimates the depth from dynamic programming routine and MRF stereo matching and use MRF optimization to fuse the results to get the robust estimate of shape. We used smooth color gradient image as our environment texture so that shape can be recovered using just a single shot. We evaluate our method using synthetic experiments on 3D models like Stanford bunny and show the real experiment results on golden statue and silver coated statue.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of reconstruction of specular surfaces using a combination of Dynamic Programming and Markov Random Fields formulation. Unlike traditional methods that require the exact position of environment points to be known, our method requires only the relative position of the environment points to be known for computing approximate normals and infer shape from them. We present an approach which estimates the depth from dynamic programming routine and MRF stereo matching and use MRF optimization to fuse the results to get the robust estimate of shape. We used smooth color gradient image as our environment texture so that shape can be recovered using just a single shot. We evaluate our method using synthetic experiments on 3D models like Stanford bunny and show the real experiment results on golden statue and silver coated statue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MRF和DP的镜面重建
本文将动态规划与马尔可夫随机场公式相结合,讨论了镜面的重建问题。与传统方法需要知道环境点的确切位置不同,我们的方法只需要知道环境点的相对位置,就可以计算近似法线并从中推断形状。提出了一种从动态规划程序和MRF立体匹配中估计深度的方法,并利用MRF优化对结果进行融合以获得形状的鲁棒估计。我们使用平滑的颜色渐变图像作为我们的环境纹理,这样形状就可以用一个镜头恢复。在斯坦福兔等三维模型上进行了综合实验,并展示了金像和镀银像的真实实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1