KRF-SLAM: A Robust AI Slam Based On Keypoint Resampling And Fusion

Wai Mun Wong, Christopher Lim, Chia-Da Lee, Lilian Wang, Shih-Che Chen, Pei-Kuei Tsung
{"title":"KRF-SLAM: A Robust AI Slam Based On Keypoint Resampling And Fusion","authors":"Wai Mun Wong, Christopher Lim, Chia-Da Lee, Lilian Wang, Shih-Che Chen, Pei-Kuei Tsung","doi":"10.1109/ICIP40778.2020.9191192","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) based feature extractors provide new possibility in the localization problem because of trainable characteristic. In this paper, the confidence information from AI learning process is used to further improve the accuracy. By resampling interest points based on different confidence thresholds, we are able to pixel-stack highlyconfident interest points to increase their bias for pose optimization. Then, the complementary descriptors are used to describe the pixel stacked interest points. As the result, the proposed Keypoint Resampling and Fusion (KRF) method improves the absolute trajectory error by 40% over state-of the-art vision SLAM algorithm on TUM Freiburg dataset. It is also more robust against tracking lost, and is compatible with existing optimizers.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) based feature extractors provide new possibility in the localization problem because of trainable characteristic. In this paper, the confidence information from AI learning process is used to further improve the accuracy. By resampling interest points based on different confidence thresholds, we are able to pixel-stack highlyconfident interest points to increase their bias for pose optimization. Then, the complementary descriptors are used to describe the pixel stacked interest points. As the result, the proposed Keypoint Resampling and Fusion (KRF) method improves the absolute trajectory error by 40% over state-of the-art vision SLAM algorithm on TUM Freiburg dataset. It is also more robust against tracking lost, and is compatible with existing optimizers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KRF-SLAM:一种基于关键点重采样和融合的鲁棒AI Slam
基于人工智能(AI)的特征提取器由于具有可训练的特征,为定位问题提供了新的可能。本文利用人工智能学习过程中的置信度信息进一步提高准确率。通过基于不同置信度阈值的兴趣点重采样,我们能够像素堆叠高置信度兴趣点,以增加它们对姿态优化的偏差。然后,利用互补描述符对像素堆叠的兴趣点进行描述。结果表明,在TUM Freiburg数据集上,所提出的关键点重采样和融合(KRF)方法比目前最先进的视觉SLAM算法的绝对轨迹误差提高了40%。它对跟踪丢失也更健壮,并且与现有的优化器兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1