High-Performance Reverse Time Migration on GPU

Javier Cabezas, M. Araya-Polo, Isaac Gelado, N. Navarro, E. Morancho, J. Cela
{"title":"High-Performance Reverse Time Migration on GPU","authors":"Javier Cabezas, M. Araya-Polo, Isaac Gelado, N. Navarro, E. Morancho, J. Cela","doi":"10.1109/SCCC.2009.19","DOIUrl":null,"url":null,"abstract":"Partial Differential Equations (PDE) are the heart of most simulations in many scientific fields, from Fluid Mechanics to Astrophysics. One the most popular mathematical schemes to solve a PDE is Finite Difference (FD). In this work we map a PDE-FD algorithm called Reverse Time Migration to a GPU using CUDA. This seismic imaging (Geophysics) algorithm is widely used in the oil industry. GPUs are natural contenders in the aftermath of the clock race, in particular for High-performance Computing (HPC). Due to GPU characteristics, the parallelism paradigm shifts from the classical threads plus SIMD to Single Program Multiple Data (SPMD). The NVIDIA GTX 280 implementation outperforms homogeneous CPUs up to 9x (Intel Harpertown E5420) and up to 14x (IBM PPC 970). These preliminary results confirm that GPUs are a real option for HPC, from performance to programmability.","PeriodicalId":398661,"journal":{"name":"2009 International Conference of the Chilean Computer Science Society","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of the Chilean Computer Science Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2009.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Partial Differential Equations (PDE) are the heart of most simulations in many scientific fields, from Fluid Mechanics to Astrophysics. One the most popular mathematical schemes to solve a PDE is Finite Difference (FD). In this work we map a PDE-FD algorithm called Reverse Time Migration to a GPU using CUDA. This seismic imaging (Geophysics) algorithm is widely used in the oil industry. GPUs are natural contenders in the aftermath of the clock race, in particular for High-performance Computing (HPC). Due to GPU characteristics, the parallelism paradigm shifts from the classical threads plus SIMD to Single Program Multiple Data (SPMD). The NVIDIA GTX 280 implementation outperforms homogeneous CPUs up to 9x (Intel Harpertown E5420) and up to 14x (IBM PPC 970). These preliminary results confirm that GPUs are a real option for HPC, from performance to programmability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU上的高性能反向时间迁移
偏微分方程(PDE)是许多科学领域中大多数模拟的核心,从流体力学到天体物理学。求解偏微分方程最常用的数学方案之一是有限差分(FD)。在这项工作中,我们将称为反向时间迁移的PDE-FD算法映射到使用CUDA的GPU。这种地震成像(地球物理)算法被广泛应用于石油工业。gpu是时钟竞赛之后的天然竞争者,特别是对于高性能计算(HPC)。由于GPU的特点,并行模式从传统的线程加SIMD转变为单程序多数据(SPMD)。NVIDIA GTX 280实现的性能最高可达9倍(Intel Harpertown E5420),最高可达14倍(IBM PPC 970)。这些初步结果证实,从性能到可编程性,gpu是HPC的真正选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining a Probabilistic Sampling Technique and Simple Heuristics to Solve the Dynamic Path Planning Problem Delayed Insertion Strategies in Dynamic Metric Indexes A Two-Level Calculus for Composing Hybrid QVT Transformations A Certified Access Controller for JME-MIDP 2.0 Enabled Mobile Devices Implementation of an Improvement Cycle Using the Competisoft Methodological Framework and the Tutelkan Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1