Saravana Prashanth Murali Babu, A. Sadeghi, A. Mondini, B. Mazzolai
{"title":"Soft sucker shoe for anti-slippage application","authors":"Saravana Prashanth Murali Babu, A. Sadeghi, A. Mondini, B. Mazzolai","doi":"10.1109/ROBOSOFT.2018.8405374","DOIUrl":null,"url":null,"abstract":"In this study, we present the design and development of a shoe outsole with active soft suckers which demonstrates a better shear resistance to prevent slip/fall of the user. The proposed design of the shoe outsole is layered by a multi-material structure with a soft suckered pattern connected to a vacuum pump (−0.8 bar). The sucker function can increase the normal force at the shoe/ground interface and enhance the frictional properties of contact area, which helps assuring a secured walking both in dry and wet surface condition. The developed shoe prototypes were characterized on different ground conditions with varying vertical load assuming the applied vertical force in human locomotion. The maximum shear resistance (≥50 Kg force) was recorded for suckered outsole that was higher than the shear resistance (≥0.9 Kg force) of normal outsole of a commercial product. The experimental results are promising in the direction to have a firm grip with suction at varying surface condition to prevent fall/slip while walking with the balance of shear force and frictional force.","PeriodicalId":306255,"journal":{"name":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOSOFT.2018.8405374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this study, we present the design and development of a shoe outsole with active soft suckers which demonstrates a better shear resistance to prevent slip/fall of the user. The proposed design of the shoe outsole is layered by a multi-material structure with a soft suckered pattern connected to a vacuum pump (−0.8 bar). The sucker function can increase the normal force at the shoe/ground interface and enhance the frictional properties of contact area, which helps assuring a secured walking both in dry and wet surface condition. The developed shoe prototypes were characterized on different ground conditions with varying vertical load assuming the applied vertical force in human locomotion. The maximum shear resistance (≥50 Kg force) was recorded for suckered outsole that was higher than the shear resistance (≥0.9 Kg force) of normal outsole of a commercial product. The experimental results are promising in the direction to have a firm grip with suction at varying surface condition to prevent fall/slip while walking with the balance of shear force and frictional force.