Water mine data fusion and model recognition

Haibo Liu, Guochang Gu, Jing Shen, Yan Fu
{"title":"Water mine data fusion and model recognition","authors":"Haibo Liu, Guochang Gu, Jing Shen, Yan Fu","doi":"10.1109/ICIA.2005.1635152","DOIUrl":null,"url":null,"abstract":"It is significant for a MCS (mine countermeasure system) to recognize the model of a water mine exactly in order to take right destroying measures. In this paper, the ABNET proposed by L.N. de Castro is simplified and employed in a multi-agent-based MCS for fusing the feature data and recognizing the model of water mines. The simplified ABNET (sABNET) is a two-layer Boolean network which number of outputs is adaptable according to the task and which recognition precision can be controlled by the immune affinity threshold. Compared with Castro's work, the sABNET converges more quickly.","PeriodicalId":136611,"journal":{"name":"2005 IEEE International Conference on Information Acquisition","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Information Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2005.1635152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is significant for a MCS (mine countermeasure system) to recognize the model of a water mine exactly in order to take right destroying measures. In this paper, the ABNET proposed by L.N. de Castro is simplified and employed in a multi-agent-based MCS for fusing the feature data and recognizing the model of water mines. The simplified ABNET (sABNET) is a two-layer Boolean network which number of outputs is adaptable according to the task and which recognition precision can be controlled by the immune affinity threshold. Compared with Castro's work, the sABNET converges more quickly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水矿数据融合与模型识别
水雷对抗系统准确识别水雷模型,对采取正确的破坏措施具有重要意义。本文对L.N. de Castro提出的ABNET进行了简化,并将其应用于基于多智能体的MCS中,用于水矿特征数据融合和模型识别。简化的ABNET (sABNET)是一个两层布尔网络,它的输出数量可以根据任务的不同而变化,识别精度可以通过免疫亲和阈值来控制。与卡斯特罗的工作相比,sABNET的收敛速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless health monitoring system Haptic telemanipulation of soft environment without direct force feedback Leader-formation navigation with sensor constraints Kinematic model aided inertial motion tracking of human upper limb Study on adaptive Kalman filtering algorithms in human movement tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1