{"title":"Simulation of large-scale electric-ship AC grids using the simulation tool VIAvento","authors":"R. Bartelt, D. Meyer, C. Heising, V. Staudt","doi":"10.1109/ESTS.2013.6523741","DOIUrl":null,"url":null,"abstract":"In converter-dominated grid structures with low short-circuit power available, the converter controls and nonlinearities of the converters have a strong influence on the overall system stability. E.g. sub-harmonic stability is a key issue in many fields of application like electric ship applications, railways and offshore wind. In order to achieve a reliable systems stability assessment, a comprehensive scenario-based assessment in time domain is unavoidable. Within this paper, the simulation tool VIAvento is briefly presented which allows for these comprehensive time-domain simulations taking the special characteristics of power-electronic assets into account. The capability of VIAvento is demonstrated with simulation results of a large-scale AC ship grid including more than 40 three-phase two-level converters. This capability makes time-domain grid planning and stability assessment in challenging converter topologies possible.","PeriodicalId":119318,"journal":{"name":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","volume":"453 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2013.6523741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In converter-dominated grid structures with low short-circuit power available, the converter controls and nonlinearities of the converters have a strong influence on the overall system stability. E.g. sub-harmonic stability is a key issue in many fields of application like electric ship applications, railways and offshore wind. In order to achieve a reliable systems stability assessment, a comprehensive scenario-based assessment in time domain is unavoidable. Within this paper, the simulation tool VIAvento is briefly presented which allows for these comprehensive time-domain simulations taking the special characteristics of power-electronic assets into account. The capability of VIAvento is demonstrated with simulation results of a large-scale AC ship grid including more than 40 three-phase two-level converters. This capability makes time-domain grid planning and stability assessment in challenging converter topologies possible.