TMC-pattern: holistic trajectory extraction, modeling and mining

Roland Assam, T. Seidl
{"title":"TMC-pattern: holistic trajectory extraction, modeling and mining","authors":"Roland Assam, T. Seidl","doi":"10.1145/2447481.2447490","DOIUrl":null,"url":null,"abstract":"Mobility data is Big Data. Modeling such raw big location data is quite challenging in terms of quality and runtime efficiency. Mobility data emanating from smart phones and other pervasive devices consists of a combination of spatio-temporal dimensions, as well as some additional contextual dimensions that may range from social network activities, diseases to telephone calls. However, most existing trajectory models focus only on the spatio-temporal dimensions of mobility data and their regions of interest depict only the popularity of a place. In this paper, we propose a novel trajectory model called Time Mobility Context Correlation Pattern (TMC-Pattern), which considers a wide variety of dimensions and utilizes subspace clustering to find contextual regions of interest. In addition, our proposed TMC-Pattern rigorously captures and embeds infrastructural, human, social and behavioral patterns into the trajectory model. We show theoretically and experimentally, how TMC-Pattern can be used for Frequent Location Sequence Mining and Location Prediction with real datasets.","PeriodicalId":416086,"journal":{"name":"International Workshop on Analytics for Big Geospatial Data","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Analytics for Big Geospatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2447481.2447490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Mobility data is Big Data. Modeling such raw big location data is quite challenging in terms of quality and runtime efficiency. Mobility data emanating from smart phones and other pervasive devices consists of a combination of spatio-temporal dimensions, as well as some additional contextual dimensions that may range from social network activities, diseases to telephone calls. However, most existing trajectory models focus only on the spatio-temporal dimensions of mobility data and their regions of interest depict only the popularity of a place. In this paper, we propose a novel trajectory model called Time Mobility Context Correlation Pattern (TMC-Pattern), which considers a wide variety of dimensions and utilizes subspace clustering to find contextual regions of interest. In addition, our proposed TMC-Pattern rigorously captures and embeds infrastructural, human, social and behavioral patterns into the trajectory model. We show theoretically and experimentally, how TMC-Pattern can be used for Frequent Location Sequence Mining and Location Prediction with real datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TMC-pattern:整体轨迹提取、建模和挖掘
移动数据是大数据。在质量和运行效率方面,对这些原始的大位置数据进行建模是相当具有挑战性的。从智能手机和其他普及设备发出的移动数据包括时空维度以及从社交网络活动、疾病到电话等其他一些额外的上下文维度的组合。然而,大多数现有的轨迹模型只关注移动性数据的时空维度,其感兴趣的区域只描述一个地方的受欢迎程度。在本文中,我们提出了一种新的轨迹模型,称为时间迁移上下文相关模式(TMC-Pattern),该模型考虑了多种维度,并利用子空间聚类来寻找感兴趣的上下文区域。此外,我们提出的TMC-Pattern严格捕获并嵌入基础设施、人类、社会和行为模式到轨迹模型中。我们从理论上和实验上展示了如何将TMC-Pattern用于真实数据集的频繁位置序列挖掘和位置预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building knowledge graph from public data for predictive analysis: a case study on predicting technology future in space and time Big data as a service from an urban information system Spatial computing goes to education and beyond: can semantic trajectory characterize students? Agent based urban growth modeling framework on Apache Spark Towards massive spatial data validation with SpatialHadoop
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1