The Importance Of Skip Connections In Encoder-Decoder Architectures For Colorectal Polyp Detection

N. Mulliqi, Sule YAYILGAN YILDIRIM, A. Mohammed, L. Ahmedi, Hao Wang, Ogerta Elezaj, Ø. Hovde
{"title":"The Importance Of Skip Connections In Encoder-Decoder Architectures For Colorectal Polyp Detection","authors":"N. Mulliqi, Sule YAYILGAN YILDIRIM, A. Mohammed, L. Ahmedi, Hao Wang, Ogerta Elezaj, Ø. Hovde","doi":"10.1109/ICIP40778.2020.9191310","DOIUrl":null,"url":null,"abstract":"Accurate polyp detection during the colonoscopy procedure impacts colorectal cancer prevention and early detection. In this paper, we investigate the influence of skip connections as the main component of encoder-decoder based convolutional neural network (CNN) architectures for colorectal polyp detection. We conduct experiments on long and short skip connections and further extend the existing architecture by introducing dense lateral skip connections. The proposed segmentation architecture utilizes short skip connections in the contracting path, moreover it utilizes dense long and lateral skip connections in between the contracting and expanding path. Results obtained from the MICCAI 2015 Challenge dataset show progressive improvement of the segmentation result with expanded utilization of skip connections. The proposed colorectal polyp segmentation architecture achieves performance comparable to the state-of-the-art under significantly reduced number of model parameters.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Accurate polyp detection during the colonoscopy procedure impacts colorectal cancer prevention and early detection. In this paper, we investigate the influence of skip connections as the main component of encoder-decoder based convolutional neural network (CNN) architectures for colorectal polyp detection. We conduct experiments on long and short skip connections and further extend the existing architecture by introducing dense lateral skip connections. The proposed segmentation architecture utilizes short skip connections in the contracting path, moreover it utilizes dense long and lateral skip connections in between the contracting and expanding path. Results obtained from the MICCAI 2015 Challenge dataset show progressive improvement of the segmentation result with expanded utilization of skip connections. The proposed colorectal polyp segmentation architecture achieves performance comparable to the state-of-the-art under significantly reduced number of model parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跳跃连接在编码器-解码器结构中对结肠直肠息肉检测的重要性
结肠镜检查过程中息肉的准确检测影响结直肠癌的预防和早期发现。在本文中,我们研究了跳跃连接作为基于编码器-解码器的卷积神经网络(CNN)架构的主要组成部分对结肠直肠息肉检测的影响。我们对长箕斗连接和短箕斗连接进行了实验,并通过引入密集的横向箕斗连接进一步扩展了现有的结构。所提出的分段体系结构在收缩路径中利用短跳过连接,并且在收缩路径和扩展路径之间利用密集的长跳过连接和横向跳过连接。从MICCAI 2015 Challenge数据集获得的结果显示,随着跳跃连接的扩大利用,分割结果逐步改善。所提出的结肠直肠息肉分割架构在显著减少模型参数数量的情况下实现了与最先进的性能相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1