ContextRank: Personalized Tourism Recommendation by Exploiting Context Information of Geotagged Web Photos

Kai Jiang, Peng Wang, Nenghai Yu
{"title":"ContextRank: Personalized Tourism Recommendation by Exploiting Context Information of Geotagged Web Photos","authors":"Kai Jiang, Peng Wang, Nenghai Yu","doi":"10.1109/ICIG.2011.48","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method: Context Rank, which utilizes the vast quantity of geo tagged photos in photo sharing website to recommend travel locations. To enhance the personalized recommendation performance, our method exploits different context information of photos, such as textual tags, geo tags, visual information, and user similarity. Context Rank first detects landmarks from photos' GPS locations, and estimates the popularity of each landmark. Within each landmark, representative photos and tags are extracted. Furthermore, Context Rank calculates the user similarity based on users' travel history. When a user's geo tagged photos are given, the landmark popularity, representative photos and tags, and the user similarity are used to predict the user preference of a landmark from different aspects. Finally a learning to rank algorithm is introduced to combine different preference predictions to give the final recommendation. Experiments performed on a dataset collected from Panoramio show that the Context Rank can obtain a better result than the state-of-the-art method.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, we propose a method: Context Rank, which utilizes the vast quantity of geo tagged photos in photo sharing website to recommend travel locations. To enhance the personalized recommendation performance, our method exploits different context information of photos, such as textual tags, geo tags, visual information, and user similarity. Context Rank first detects landmarks from photos' GPS locations, and estimates the popularity of each landmark. Within each landmark, representative photos and tags are extracted. Furthermore, Context Rank calculates the user similarity based on users' travel history. When a user's geo tagged photos are given, the landmark popularity, representative photos and tags, and the user similarity are used to predict the user preference of a landmark from different aspects. Finally a learning to rank algorithm is introduced to combine different preference predictions to give the final recommendation. Experiments performed on a dataset collected from Panoramio show that the Context Rank can obtain a better result than the state-of-the-art method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
contextank:利用网络照片地理标记的语境信息进行个性化旅游推荐
在本文中,我们提出了一种方法:Context Rank,利用照片分享网站上大量的地理标记照片来推荐旅行地点。为了提高个性化推荐的性能,我们的方法利用了照片的不同上下文信息,如文本标签、地理标签、视觉信息和用户相似度。Rank首先从照片的GPS位置检测地标,并估计每个地标的受欢迎程度。在每个地标中,提取具有代表性的照片和标签。此外,上下文排名根据用户的旅行历史计算用户的相似度。在给定用户地理标记照片的情况下,利用地标知名度、代表性照片和标签以及用户相似度从不同方面预测用户对地标的偏好。最后介绍了一种排序学习算法,结合不同的偏好预测给出最终推荐。在Panoramio收集的数据集上进行的实验表明,上下文秩比最先进的方法可以获得更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Face Recognition by Sparse Local Features from a Single Image under Occlusion LIDAR-based Long Range Road Intersection Detection A Novel Algorithm for Ship Detection Based on Dynamic Fusion Model of Multi-feature and Support Vector Machine Target Tracking Based on Wavelet Features in the Dynamic Image Sequence Visual Word Pairs for Similar Image Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1