Broadband and Enhanced Energy Harvesting Using Inerter Pendulum Vibration Absorber

Aakash Gupta, Wei-Che Tai
{"title":"Broadband and Enhanced Energy Harvesting Using Inerter Pendulum Vibration Absorber","authors":"Aakash Gupta, Wei-Che Tai","doi":"10.1115/detc2020-22200","DOIUrl":null,"url":null,"abstract":"\n Inerter-based vibration energy harvesters (VEHs) have been widely studied to harvest energy from large-scale structural vibrations. Recently, there have been efforts to increase the operation frequency bandwidth of VEHs by introducing a variety of stiffness and inertia nonlinearity. This paper proposes a new inerter-based VEH comprising an epicyclic-gearing inerter and a pendulum vibration absorber. The centrifugal force of the pendulum introduces a new type of inertia nonlinearity that broadens the frequency bandwidth. This inerter-pendulum VEH (IPVEH) is incorporated in a single-degree-of-freedom structure to demonstrate its performance and the equations of motion of the system are derived. The method of multiple scales is applied to derive the amplitude–frequency response relationship of the harvested power in the primary resonance. The harvested power is optimized through tuning the harvester’s electrical damping and the optimum power is benchmarked with that of conventional linear inerter-based VEHs. The results show that the IPVEH has larger bandwidth and harvested power and the improvement is correlated with the strength of its inertia nonlinearity.","PeriodicalId":398186,"journal":{"name":"Volume 7: 32nd Conference on Mechanical Vibration and Noise (VIB)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 32nd Conference on Mechanical Vibration and Noise (VIB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Inerter-based vibration energy harvesters (VEHs) have been widely studied to harvest energy from large-scale structural vibrations. Recently, there have been efforts to increase the operation frequency bandwidth of VEHs by introducing a variety of stiffness and inertia nonlinearity. This paper proposes a new inerter-based VEH comprising an epicyclic-gearing inerter and a pendulum vibration absorber. The centrifugal force of the pendulum introduces a new type of inertia nonlinearity that broadens the frequency bandwidth. This inerter-pendulum VEH (IPVEH) is incorporated in a single-degree-of-freedom structure to demonstrate its performance and the equations of motion of the system are derived. The method of multiple scales is applied to derive the amplitude–frequency response relationship of the harvested power in the primary resonance. The harvested power is optimized through tuning the harvester’s electrical damping and the optimum power is benchmarked with that of conventional linear inerter-based VEHs. The results show that the IPVEH has larger bandwidth and harvested power and the improvement is correlated with the strength of its inertia nonlinearity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用惯性摆振器进行宽带和增强能量收集
基于interter的振动能量收集器(VEHs)已被广泛研究用于从大尺度结构振动中收集能量。近年来,人们一直在努力通过引入各种刚度和惯性非线性来增加机动车辆的工作频率带宽。本文提出了一种由行星齿轮传动式减振器和摆式减振器组成的新型干涉器结构。摆的离心力引入了一种新的惯性非线性,使频率带宽变宽。为了验证该系统的性能,推导了该系统的运动方程。采用多尺度法推导了主共振中收获功率的幅频响应关系。通过调整采集器的电阻尼来优化采集器的功率,并以传统的基于线性干涉器的采集器的功率为基准进行优化。结果表明,IPVEH具有更大的带宽和收获功率,其改善与其惯性非线性的强度有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HPC FEM Calculations for Damping Estimation of Bladed Disk With Dry-Friction Contacts Design and Amplitude Dependence of Resonance Frequency of Origami-Inspired Vibration Isolators With Quasi-Zero-Stiffness Characteristic Investigating How Additively Manufactured Parts in Traditionally Manufactured Systems Affect the System Dynamic Properties Electromechanical Diode: Acoustic Non-Reciprocity in Weakly Nonlinear Metamaterial With Electromechanical Resonators Superharmonic Resonance of Third Order of Electrostatically Actuated MEMS Circular Plates: Effect of AC Frequency on Voltage Response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1