M. Odendahl, Andrés Goens, R. Leupers, G. Ascheid, T. Henriksson
{"title":"Buffer Allocation Based On-Chip Memory Optimization for Many-Core Platforms","authors":"M. Odendahl, Andrés Goens, R. Leupers, G. Ascheid, T. Henriksson","doi":"10.1109/IPDPSW.2015.67","DOIUrl":null,"url":null,"abstract":"The problem of finding an optimal allocation of logical data buffers to memory has emerged as a new research challenge due to the increased complexity of applications and new emerging Dynamic RAM (DRAM) interface technologies. This new opportunity of a large off-chip memory accessible by an ample bandwidth allows to reduce the on-chip Static RAM (SRAM) significantly and save production cost of future manycore platforms. We thus propose changes to an existing work that allows to uniformly reduce the on-chip memory size for a given application. We additionally introduce a novel linear programming model to automatically generate all necessary on chip memory sizes for a given application based on an optimal allocation of data buffers. An extension allows to further reduce the required on-chip memory in multi-application scenarios. We conduct a case study to validate all our models and show the applicability of our approach.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The problem of finding an optimal allocation of logical data buffers to memory has emerged as a new research challenge due to the increased complexity of applications and new emerging Dynamic RAM (DRAM) interface technologies. This new opportunity of a large off-chip memory accessible by an ample bandwidth allows to reduce the on-chip Static RAM (SRAM) significantly and save production cost of future manycore platforms. We thus propose changes to an existing work that allows to uniformly reduce the on-chip memory size for a given application. We additionally introduce a novel linear programming model to automatically generate all necessary on chip memory sizes for a given application based on an optimal allocation of data buffers. An extension allows to further reduce the required on-chip memory in multi-application scenarios. We conduct a case study to validate all our models and show the applicability of our approach.