Buffer Allocation Based On-Chip Memory Optimization for Many-Core Platforms

M. Odendahl, Andrés Goens, R. Leupers, G. Ascheid, T. Henriksson
{"title":"Buffer Allocation Based On-Chip Memory Optimization for Many-Core Platforms","authors":"M. Odendahl, Andrés Goens, R. Leupers, G. Ascheid, T. Henriksson","doi":"10.1109/IPDPSW.2015.67","DOIUrl":null,"url":null,"abstract":"The problem of finding an optimal allocation of logical data buffers to memory has emerged as a new research challenge due to the increased complexity of applications and new emerging Dynamic RAM (DRAM) interface technologies. This new opportunity of a large off-chip memory accessible by an ample bandwidth allows to reduce the on-chip Static RAM (SRAM) significantly and save production cost of future manycore platforms. We thus propose changes to an existing work that allows to uniformly reduce the on-chip memory size for a given application. We additionally introduce a novel linear programming model to automatically generate all necessary on chip memory sizes for a given application based on an optimal allocation of data buffers. An extension allows to further reduce the required on-chip memory in multi-application scenarios. We conduct a case study to validate all our models and show the applicability of our approach.","PeriodicalId":340697,"journal":{"name":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Parallel and Distributed Processing Symposium Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2015.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The problem of finding an optimal allocation of logical data buffers to memory has emerged as a new research challenge due to the increased complexity of applications and new emerging Dynamic RAM (DRAM) interface technologies. This new opportunity of a large off-chip memory accessible by an ample bandwidth allows to reduce the on-chip Static RAM (SRAM) significantly and save production cost of future manycore platforms. We thus propose changes to an existing work that allows to uniformly reduce the on-chip memory size for a given application. We additionally introduce a novel linear programming model to automatically generate all necessary on chip memory sizes for a given application based on an optimal allocation of data buffers. An extension allows to further reduce the required on-chip memory in multi-application scenarios. We conduct a case study to validate all our models and show the applicability of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多核平台片上内存优化的缓冲区分配
由于应用程序的复杂性增加和新兴的动态RAM (DRAM)接口技术,寻找逻辑数据缓冲区到内存的最佳分配问题已经成为一个新的研究挑战。这种由充足带宽访问的大型片外存储器的新机会可以显着减少片上静态RAM (SRAM),并节省未来多核平台的生产成本。因此,我们建议对现有工作进行更改,以允许统一地减少给定应用程序的片上内存大小。我们还引入了一种新颖的线性规划模型,可以根据数据缓冲区的最佳分配自动生成给定应用程序所需的所有芯片内存大小。扩展允许在多应用场景中进一步减少所需的片上内存。我们进行一个案例研究来验证我们所有的模型,并展示我们方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Large-Scale Single-Source Shortest Path on FPGA Relocation-Aware Floorplanning for Partially-Reconfigurable FPGA-Based Systems iWAPT Introduction and Committees Computing the Pseudo-Inverse of a Graph's Laplacian Using GPUs Optimizing Defensive Investments in Energy-Based Cyber-Physical Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1