Fast CU Splitting And Computational Complexity Minimization Technique By Using Machine Learning Algorithm In Video Compression

Md. Zahirul Islam, Boshir Ahmed
{"title":"Fast CU Splitting And Computational Complexity Minimization Technique By Using Machine Learning Algorithm In Video Compression","authors":"Md. Zahirul Islam, Boshir Ahmed","doi":"10.1109/ICEEE54059.2021.9718854","DOIUrl":null,"url":null,"abstract":"Video compression is frequently used for reducing the original data in order to store or communicate the data through a transmission line. All modern video codecs use the flexible block partitioning at the time of rate-distortion (RDO) process. As a result, these codecs minimize the bits but has a immense time complexity. So, computational time complexity is one the main problems for video encoders and decoders. In this work, we proposed a machine learning approach called gradient descent algorithm for fast CU splitting to reduce the time complexity of the video encoder by using the concept of skip criterion. Experimental results show that on average 44.18% encoding time can be saved over HEVC (High Efficiency Video Coding). On the other hand, on average, 1.34% bit rate is increased as a trade-off.","PeriodicalId":188366,"journal":{"name":"2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Electrical & Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE54059.2021.9718854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Video compression is frequently used for reducing the original data in order to store or communicate the data through a transmission line. All modern video codecs use the flexible block partitioning at the time of rate-distortion (RDO) process. As a result, these codecs minimize the bits but has a immense time complexity. So, computational time complexity is one the main problems for video encoders and decoders. In this work, we proposed a machine learning approach called gradient descent algorithm for fast CU splitting to reduce the time complexity of the video encoder by using the concept of skip criterion. Experimental results show that on average 44.18% encoding time can be saved over HEVC (High Efficiency Video Coding). On the other hand, on average, 1.34% bit rate is increased as a trade-off.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频压缩中基于机器学习算法的快速CU分割和计算复杂度最小化技术
视频压缩通常用于压缩原始数据,以便通过传输线存储或传输数据。现代视频编解码器在进行码率失真(RDO)处理时都采用了灵活的块划分方法。因此,这些编解码器将比特最小化,但具有巨大的时间复杂性。因此,计算时间复杂度是视频编码器和解码器面临的主要问题之一。在这项工作中,我们提出了一种称为梯度下降算法的机器学习方法,用于快速CU分割,通过使用跳过准则的概念来降低视频编码器的时间复杂度。实验结果表明,采用HEVC (High Efficiency Video Coding)编码方法平均可节省44.18%的编码时间。另一方面,平均而言,作为权衡,比特率增加了1.34%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer-Aided Polyp Removal Detection in Endoscopic Images FPGA based Histogram Equalization for Image Processing Spreading Loss Model for Channel Characterization of Future 6G Terahertz Communication Networks Impact of Cladding Rectangular Bars on the Antiresonant Hollow Core Fiber Predicting Autism Spectrum Disorder Based On Gender Using Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1