Stock Picking with Machine Learning

D. Wolff, F. Echterling
{"title":"Stock Picking with Machine Learning","authors":"D. Wolff, F. Echterling","doi":"10.2139/ssrn.3607845","DOIUrl":null,"url":null,"abstract":"We analyze machine learning algorithms for stock selection. Our study builds on weekly data for the historical constituents of the S&P500 over the period from January 1999 to March 2021 and builds on typical equity factors, additional firm fundamentals, and technical indicators. A variety of machine learning models are trained on the binary classification task to predict whether a specific stock outperforms or underperforms the cross‐sectional median return over the subsequent week. We analyze weekly trading strategies that invest in stocks with the highest predicted outperformance probability. Our empirical results show substantial and significant outperformance of machine learning‐based stock selection models compared to an equally weighted benchmark. Interestingly, we find more simplistic regularized logistic regression models to perform similarly well compared to more complex machine learning models. The results are robust when applied to the STOXX Europe 600 as alternative asset universe.","PeriodicalId":233958,"journal":{"name":"European Finance eJournal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Finance eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3607845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We analyze machine learning algorithms for stock selection. Our study builds on weekly data for the historical constituents of the S&P500 over the period from January 1999 to March 2021 and builds on typical equity factors, additional firm fundamentals, and technical indicators. A variety of machine learning models are trained on the binary classification task to predict whether a specific stock outperforms or underperforms the cross‐sectional median return over the subsequent week. We analyze weekly trading strategies that invest in stocks with the highest predicted outperformance probability. Our empirical results show substantial and significant outperformance of machine learning‐based stock selection models compared to an equally weighted benchmark. Interestingly, we find more simplistic regularized logistic regression models to perform similarly well compared to more complex machine learning models. The results are robust when applied to the STOXX Europe 600 as alternative asset universe.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习选股
我们分析股票选择的机器学习算法。我们的研究基于1999年1月至2021年3月期间标准普尔500指数历史成分股的每周数据,并基于典型的股票因素、额外的坚实基本面和技术指标。在二元分类任务上训练了各种机器学习模型,以预测特定股票在随后一周的表现是优于还是低于横截面中位数回报。我们分析了每周的交易策略,这些策略投资于预期表现最好的股票。我们的实证结果显示,与同等权重的基准相比,基于机器学习的选股模型的表现显著优于其他模型。有趣的是,我们发现与更复杂的机器学习模型相比,更简单的正则化逻辑回归模型表现得同样好。当应用于斯托克欧洲600指数作为另类资产时,结果是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Option-Like Fund Performance Fees in Asset Management via Monte Carlo Actuarial Distortion Pricing Cultural values of parent bank board members and lending by foreign subsidiaries: The moderating role of personal traits Deleveraging CAPM: Asset Betas vs. Equity Betas The Dynamics of Financial Policies and Group Decisions in Private Firms Money Talks: Information and Seignorage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1