EEG Based Depression Recognition by Employing Static and Dynamic Network Metrics

Shuting Sun, Chang Yan, Juntong Lyu, Yueran Xin, Jieyuan Zheng, Zhaolong Yu, B. Hu
{"title":"EEG Based Depression Recognition by Employing Static and Dynamic Network Metrics","authors":"Shuting Sun, Chang Yan, Juntong Lyu, Yueran Xin, Jieyuan Zheng, Zhaolong Yu, B. Hu","doi":"10.1109/BIBM55620.2022.9994864","DOIUrl":null,"url":null,"abstract":"Neural circuit dysfunction underlies the biological mechanisms of major depressive disorder (MDD). However, little is known about how the brain’s dynamic connectomes differentiate between depressed patients and normal controls. As a result, we collected resting-state Electroencephalography from 16 MDD patients and 16 controls using 128-electrode geodesic sensor net. Static and dynamic network metrics were later applied to explore the abnormal topological structure of MDD patients and identify them from normal controls using traditional machine learning algorithms with feature selection methods. Results showed that the MDD tend to have a more randomized formation both in static and dynamic network. We also found that the combined static-dynamic feature set usually outperformed others with a highest accuracy of 79.25% under delta band. Lower frequency band (delta, theta) showed relatively better outcomes compared to higher frequency band (alpha, beta). It also indicate the role of functional segregation features as a potential biomarker for depression. In conclusion, neuropathological mechanism of depression may be more objectively quantified and evaluated from the perspective of combining static and dynamic network.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9994864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural circuit dysfunction underlies the biological mechanisms of major depressive disorder (MDD). However, little is known about how the brain’s dynamic connectomes differentiate between depressed patients and normal controls. As a result, we collected resting-state Electroencephalography from 16 MDD patients and 16 controls using 128-electrode geodesic sensor net. Static and dynamic network metrics were later applied to explore the abnormal topological structure of MDD patients and identify them from normal controls using traditional machine learning algorithms with feature selection methods. Results showed that the MDD tend to have a more randomized formation both in static and dynamic network. We also found that the combined static-dynamic feature set usually outperformed others with a highest accuracy of 79.25% under delta band. Lower frequency band (delta, theta) showed relatively better outcomes compared to higher frequency band (alpha, beta). It also indicate the role of functional segregation features as a potential biomarker for depression. In conclusion, neuropathological mechanism of depression may be more objectively quantified and evaluated from the perspective of combining static and dynamic network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于静态和动态网络度量的脑电抑郁症识别
神经回路功能障碍是重度抑郁症(MDD)的生物学机制基础。然而,对于大脑的动态连接体如何区分抑郁症患者和正常对照组,人们知之甚少。因此,我们使用128电极测地传感器网收集了16名重度抑郁症患者和16名对照者的静息状态脑电图。随后,静态和动态网络指标被用于探索MDD患者的异常拓扑结构,并使用传统的带有特征选择方法的机器学习算法将其从正常对照中识别出来。结果表明,无论在静态网络还是动态网络中,MDD的形成都趋于随机化。我们还发现,静态-动态组合特征集通常优于其他特征集,在delta波段下准确率最高,达到79.25%。较低的频带(delta, theta)与较高的频带(alpha, beta)相比,表现出相对更好的结果。这也表明功能分离特征作为抑郁症的潜在生物标志物的作用。综上所述,从静态网络与动态网络相结合的角度,可以更客观地量化和评价抑郁症的神经病理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for associating structural variants with cell-specific transcription factors and histone modifications in defect phenotypes Secure Password Using EEG-based BrainPrint System: Unlock Smartphone Password Using Brain-Computer Interface Technology On functional annotation with gene co-expression networks ST-ChIP: Accurate prediction of spatiotemporal ChIP-seq data with recurrent neural networks Discovering the Knowledge in Unstructured Early Drug Development Data Using NLP and Advanced Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1