Achieving application-centric performance targets via consolidation on multicores: myth or reality?

L. Chen, Danilo Ansaloni, E. Smirni, A. Yokokawa, Walter Binder
{"title":"Achieving application-centric performance targets via consolidation on multicores: myth or reality?","authors":"L. Chen, Danilo Ansaloni, E. Smirni, A. Yokokawa, Walter Binder","doi":"10.1145/2287076.2287083","DOIUrl":null,"url":null,"abstract":"Consolidation of multiple applications with diverse and changing resource requirements is common in multicore systems as hardware resources are abundant and opportunities for better system usage are plenty. Can we maximize resource usage in such a system while respecting individual application performance targets or is it an oxymoron to simultaneously meet such conflicting measures? In this work we provide a solution to the above difficult problem by constructing a queueing-theory based tool that we use to accurately predict application scalability on multicores and that can also provide the optimal consolidation suggestions to maximize system resource usage while meeting simultaneously application performance targets. The proposed methodology is light-weight and relies on capturing application resource demands using standard tools, via nonintrusive low-level measurements. We evaluate our approach on an IBM Power7 system using the DaCapo and SPECjvm benchmark suites where each benchmark exhibits different patterns of parallelism. From 900 different consolidations of application instances, our tool accurately predicts the average iteration time of allocated applications with an average error below 10%.","PeriodicalId":330072,"journal":{"name":"IEEE International Symposium on High-Performance Parallel Distributed Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Parallel Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2287076.2287083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Consolidation of multiple applications with diverse and changing resource requirements is common in multicore systems as hardware resources are abundant and opportunities for better system usage are plenty. Can we maximize resource usage in such a system while respecting individual application performance targets or is it an oxymoron to simultaneously meet such conflicting measures? In this work we provide a solution to the above difficult problem by constructing a queueing-theory based tool that we use to accurately predict application scalability on multicores and that can also provide the optimal consolidation suggestions to maximize system resource usage while meeting simultaneously application performance targets. The proposed methodology is light-weight and relies on capturing application resource demands using standard tools, via nonintrusive low-level measurements. We evaluate our approach on an IBM Power7 system using the DaCapo and SPECjvm benchmark suites where each benchmark exhibits different patterns of parallelism. From 900 different consolidations of application instances, our tool accurately predicts the average iteration time of allocated applications with an average error below 10%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多核整合实现以应用程序为中心的性能目标:神话还是现实?
在多核系统中,整合具有不同和不断变化的资源需求的多个应用程序是很常见的,因为硬件资源丰富,并且有很多机会可以更好地使用系统。在这样一个系统中,我们能在尊重单个应用程序性能目标的同时最大限度地利用资源吗?还是同时满足这些相互冲突的措施是一种矛盾?在这项工作中,我们通过构建一个基于排队理论的工具来解决上述难题,我们使用该工具来准确预测应用程序在多核上的可伸缩性,并且还可以提供最佳整合建议,以最大化系统资源使用,同时满足应用程序性能目标。所提出的方法是轻量级的,并且依赖于通过非侵入性的低级测量使用标准工具捕获应用程序资源需求。我们在IBM Power7系统上使用DaCapo和SPECjvm基准套件来评估我们的方法,其中每个基准都展示了不同的并行模式。从900个不同的应用程序实例的整合中,我们的工具准确地预测分配的应用程序的平均迭代时间,平均误差低于10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data filtering for scalable high-dimensional k-NN search on multicore systems Communication-driven scheduling for virtual clusters in cloud When paxos meets erasure code: reduce network and storage cost in state machine replication Domino: an incremental computing framework in cloud with eventual synchronization TOP-PIM: throughput-oriented programmable processing in memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1