Body coupled communication: The channel and implantable sensors

G. Anderson, C. Sodini
{"title":"Body coupled communication: The channel and implantable sensors","authors":"G. Anderson, C. Sodini","doi":"10.1109/BSN.2013.6575490","DOIUrl":null,"url":null,"abstract":"To enable long-term medical monitoring, power consumption of the sensor nodes must be minimized. Most sensors power budgets are dominated by storing acquired data to memory or transmitting the information off the node. Body area networks (BAN) can decrease the power used by the sensor node and can be formed using body coupled communication (BCC). This paper will propose and verify an electrical model of the human body for BCC. This body model gives greater insight into how BCC works and how receiver architecture affects channel gain. Utilizing this insight the channel gain was increased by almost 20 dB. The proposed model allows for implants and explains how implants are able to transmit information outside the body using BCC. As it is important to have electrically isolated equipment to measure the BCC channel, a battery-powered wireless transmitter and receiver were created to measure the channel gain. The design of the measurement equipment is also detailed.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"17 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

To enable long-term medical monitoring, power consumption of the sensor nodes must be minimized. Most sensors power budgets are dominated by storing acquired data to memory or transmitting the information off the node. Body area networks (BAN) can decrease the power used by the sensor node and can be formed using body coupled communication (BCC). This paper will propose and verify an electrical model of the human body for BCC. This body model gives greater insight into how BCC works and how receiver architecture affects channel gain. Utilizing this insight the channel gain was increased by almost 20 dB. The proposed model allows for implants and explains how implants are able to transmit information outside the body using BCC. As it is important to have electrically isolated equipment to measure the BCC channel, a battery-powered wireless transmitter and receiver were created to measure the channel gain. The design of the measurement equipment is also detailed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
身体耦合通信:通道和植入式传感器
为了实现长期医疗监测,传感器节点的功耗必须最小化。大多数传感器的功率预算主要用于将获取的数据存储到存储器或将信息传输到节点外。体域网络(BAN)可以降低传感器节点的功耗,并且可以使用体耦合通信(BCC)来形成。本文将提出并验证BCC的人体电模型。这个主体模型可以更深入地了解BCC是如何工作的,以及接收器架构是如何影响信道增益的。利用这种洞察力,信道增益增加了近20 dB。提出的模型允许植入,并解释了植入物如何能够使用BCC在体外传输信息。由于使用电隔离设备来测量BCC信道非常重要,因此创建了电池供电的无线发射器和接收器来测量信道增益。并详细介绍了测量设备的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-person vision-based head detector for markerless human motion capture Towards estimation of front-crawl energy expenditure using the wearable aquatic movement analysis system (WAMAS) A study on instance-based learning with reduced training prototypes for device-context-independent activity recognition on a mobile phone A low power miniaturized CMOS-based continuous glucose monitoring system Multi-channel pulse oximetry for wearable physiological monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1