Prediction of breakdown voltages in N2 + SF6 gas mixtures

S. S. Tezcan, M. Dincer, H. Hiziroglu
{"title":"Prediction of breakdown voltages in N2 + SF6 gas mixtures","authors":"S. S. Tezcan, M. Dincer, H. Hiziroglu","doi":"10.1109/CEIDP.2006.312101","DOIUrl":null,"url":null,"abstract":"This study proposes artificial neural networks (ANN) to predict the breakdown voltages in N2 + SF6 gas mixtures. The proposed ANN consists of one input layer, two hidden layers and one output layer, which is essentially the predicted breakdown voltage. In order to train the ANN, the experimental data available in literature for N2 + SF6 have been used. When compared with the experimental data the average relative errors on predicted breakdown voltages are found to be less than plusmn5% for training as well as for testing in all cases using the proposed ANNs. Since the average errors are less than 5%, it is recommended to use the proposed ANNs to predict the breakdown voltages.","PeriodicalId":219099,"journal":{"name":"2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2006.312101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This study proposes artificial neural networks (ANN) to predict the breakdown voltages in N2 + SF6 gas mixtures. The proposed ANN consists of one input layer, two hidden layers and one output layer, which is essentially the predicted breakdown voltage. In order to train the ANN, the experimental data available in literature for N2 + SF6 have been used. When compared with the experimental data the average relative errors on predicted breakdown voltages are found to be less than plusmn5% for training as well as for testing in all cases using the proposed ANNs. Since the average errors are less than 5%, it is recommended to use the proposed ANNs to predict the breakdown voltages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N2 + SF6混合气体击穿电压的预测
本研究提出人工神经网络(ANN)来预测N2 + SF6混合气体中的击穿电压。所提出的人工神经网络由一个输入层、两个隐藏层和一个输出层组成,输出层本质上是预测的击穿电压。为了训练人工神经网络,我们使用了文献中关于N2 + SF6的实验数据。当与实验数据进行比较时,发现在使用所提出的人工神经网络的所有情况下,对预测击穿电压的平均相对误差小于±5%。由于平均误差小于5%,建议使用所提出的人工神经网络来预测击穿电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Higher frequency performance of stress-grading systems for HV large rotating machines Relationship between PD-induced electromagnetic wave measured with UHF method and charge quantity obtained by PD current waveform in model GIS Dielectric Properties of Biodegradable Polymers Dielectric response of SRBP as a function of oil and oil/moisture absorption. Electrical surface resistivity of organic coating resin in arc-decomposed SF6 gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1