Bounds on belief and plausibility of functionally propagated random sets

C. Joslyn, J. C. Helton
{"title":"Bounds on belief and plausibility of functionally propagated random sets","authors":"C. Joslyn, J. C. Helton","doi":"10.1109/NAFIPS.2002.1018095","DOIUrl":null,"url":null,"abstract":"We are interested in improving risk and reliability analysis of complex systems where our knowledge of system performance is provided by large simulation codes, and where moreover input parameters are known only imprecisely. Such imprecision lends itself to interval representations of parameter values, and thence to quantifying our uncertainty through Dempster-Shafer or Probability Bounds representations on the input space. In this context, the simulation code acts as a large \"black box\" function f, transforming one input Dempster-Shafer structure on the line into an output random interval f(A). Our quantification of output uncertainty is then based on this output random interval.. If some properties of f are known, then some information about f(A) can be determined. But when f is a pure black box, we must resort to sampling approaches. We present the basic formalism of a Monte Carlo approach to sampling a functionally propagated general random set, as opposed to a random interval. We show that the results of straightforward formal definitions are mathematically coherent, in the sense that bounding and convergence properties are achieved.","PeriodicalId":348314,"journal":{"name":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2002.1018095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We are interested in improving risk and reliability analysis of complex systems where our knowledge of system performance is provided by large simulation codes, and where moreover input parameters are known only imprecisely. Such imprecision lends itself to interval representations of parameter values, and thence to quantifying our uncertainty through Dempster-Shafer or Probability Bounds representations on the input space. In this context, the simulation code acts as a large "black box" function f, transforming one input Dempster-Shafer structure on the line into an output random interval f(A). Our quantification of output uncertainty is then based on this output random interval.. If some properties of f are known, then some information about f(A) can be determined. But when f is a pure black box, we must resort to sampling approaches. We present the basic formalism of a Monte Carlo approach to sampling a functionally propagated general random set, as opposed to a random interval. We show that the results of straightforward formal definitions are mathematically coherent, in the sense that bounding and convergence properties are achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
函数传播随机集的置信和似然界
我们对改进复杂系统的风险和可靠性分析感兴趣,在这些系统中,我们对系统性能的了解是由大型仿真代码提供的,而且输入参数是不精确的。这种不精确使其适合于参数值的区间表示,从而通过输入空间上的Dempster-Shafer或概率界表示来量化我们的不确定性。在这种情况下,仿真代码充当一个大的“黑盒”函数f,将在线上的一个输入Dempster-Shafer结构转换为输出随机区间f(a)。我们对输出不确定性的量化是基于这个输出随机区间的。如果已知f的某些性质,则可以确定f(A)的一些信息。但是当f是一个纯黑盒时,我们必须采用抽样方法。我们提出了一个蒙特卡罗方法的基本形式来采样一个函数传播的一般随机集,而不是一个随机区间。我们证明了直接的形式定义的结果在数学上是一致的,在边界和收敛性质的意义上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy linear clustering for fabric selection from online database Fuzzy clustering in vision recognition applied in NAVI Fuzzy functions to select an optimal action in decision theory Fuzzy systems and soft O.R Conceptual fuzzy sets-based navigation system for Yahoo!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1