Computationally efficient statistical face model in the feature space

Mohammad Haghighat, M. Abdel-Mottaleb, W. Alhalabi
{"title":"Computationally efficient statistical face model in the feature space","authors":"Mohammad Haghighat, M. Abdel-Mottaleb, W. Alhalabi","doi":"10.1109/CIBIM.2014.7015453","DOIUrl":null,"url":null,"abstract":"In this paper, we present a computationally efficient statistical face modeling approach. The efficiency of our proposed approach is the result of mathematical simplifications in the core formula of a previous face modeling method and the use of the singular value decomposition. In order to reduce the errors in our resulting models, we preprocess the facial images to normalize for pose and illumination and remove little occlusions. Then, the statistical face models for the enrolled subjects are obtained from the normalized face images. The effects of the variations in pose, facial expression, and illumination on the accuracy of the system are studied. Experimental results demonstrate the reduction in the computational complexity of the new approach and its efficacy in modeling the face images.","PeriodicalId":432938,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2014.7015453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a computationally efficient statistical face modeling approach. The efficiency of our proposed approach is the result of mathematical simplifications in the core formula of a previous face modeling method and the use of the singular value decomposition. In order to reduce the errors in our resulting models, we preprocess the facial images to normalize for pose and illumination and remove little occlusions. Then, the statistical face models for the enrolled subjects are obtained from the normalized face images. The effects of the variations in pose, facial expression, and illumination on the accuracy of the system are studied. Experimental results demonstrate the reduction in the computational complexity of the new approach and its efficacy in modeling the face images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算效率高的特征空间统计人脸模型
在本文中,我们提出了一种计算效率高的统计人脸建模方法。本文提出的方法的效率是对先前人脸建模方法的核心公式进行数学简化和使用奇异值分解的结果。为了减少最终模型的误差,我们对面部图像进行预处理,对姿态和光照进行归一化,并去除小遮挡。然后,从归一化的人脸图像中得到被试的统计人脸模型。研究了姿态、面部表情和光照变化对系统精度的影响。实验结果表明,该方法降低了计算复杂度,有效地实现了人脸图像的建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biometric template update under facial aging Multi-angle based lively sclera biometrics at a distance Differential evolution based score level fusion for multi-modal biometric systems Multi-spectral facial biometrics in access control Adaptive multi-stream score fusion for illumination invariant face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1