Summarizing Opinions with Sentiment Analysis from Multiple Reviews on Travel Destinations

Argha Roy, Shyamali Guria, Suman Halder, Sayani Banerjee, Sourav Mandal
{"title":"Summarizing Opinions with Sentiment Analysis from Multiple Reviews on Travel Destinations","authors":"Argha Roy, Shyamali Guria, Suman Halder, Sayani Banerjee, Sourav Mandal","doi":"10.4018/IJSE.2018070107","DOIUrl":null,"url":null,"abstract":"Recently, the web has been crowded with growing volumes of various texts on every aspect of human life. It is difficult to rapidly access, analyze, and compose important decisions using efficient methods for raw textual data in the form of social media, blogs, feedback, reviews, etc., which receive textual inputs directly. It proposes an efficient method for summarization of various reviews of tourists on a specific tourist spot towards analyzing their sentiments towards the place. A classification technique automatically arranges documents into predefined categories and a summarization algorithm produces the exact condensed input such that output is most significant concepts of source documents. Finally, sentiment analysis is done in summarized opinion using NLP and text analysis techniques to show overall sentiment about the spot. Therefore, interested tourists can plan to visit the place do not go through all the reviews, rather they go through summarized documents with the overall sentiment about target place.","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSE.2018070107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recently, the web has been crowded with growing volumes of various texts on every aspect of human life. It is difficult to rapidly access, analyze, and compose important decisions using efficient methods for raw textual data in the form of social media, blogs, feedback, reviews, etc., which receive textual inputs directly. It proposes an efficient method for summarization of various reviews of tourists on a specific tourist spot towards analyzing their sentiments towards the place. A classification technique automatically arranges documents into predefined categories and a summarization algorithm produces the exact condensed input such that output is most significant concepts of source documents. Finally, sentiment analysis is done in summarized opinion using NLP and text analysis techniques to show overall sentiment about the spot. Therefore, interested tourists can plan to visit the place do not go through all the reviews, rather they go through summarized documents with the overall sentiment about target place.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用旅游目的地多重评论的情感分析总结意见
最近,网络上充斥着越来越多的关于人类生活各个方面的各种文本。对于直接接收文本输入的社交媒体、博客、反馈、评论等形式的原始文本数据,很难使用有效的方法快速访问、分析和组成重要决策。它提出了一种有效的方法来总结游客对特定旅游景点的各种评论,以分析他们对该地方的情绪。分类技术自动将文档排列到预定义的类别中,摘要算法生成精确的压缩输入,以便输出是源文档中最重要的概念。最后,使用自然语言处理和文本分析技术对总结意见进行情感分析,以显示对现场的整体情感。因此,感兴趣的游客可以不去看所有的评论,而是带着对目标地点的整体感受去看总结的文件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Study of Different Classification Techniques for Sentiment Analysis Segmentation of Leukemia Cells Using Clustering: A Comparative Study Analyzing Tagore's Emotion With the Passage of Time in Song-Offerings: A Philosophical Study Based on Computational Intelligence Sarcasm Detection for Workplace Stress Management 2D Shape Recognition and Retrieval Using Shape Contour Based on the 8-Neighborhood Patterns Matching Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1